

Table of Contents

Executive Summary 1
Fruita's Transportation Vision 2
Planning Process 3
Phase I 3
Phase II 3
Key Themes 3
Existing Conditions 5
Big Moves 6
Additional Crossings of Major Barriers 6
Connections from East Fruita to Grand Junction 9
Encourage East-West Connectivity other than Aspen Avenue 10
Street Functional Classification 11
Walking, Biking, and Transit Networks 16
Walking Network 16
Biking Network 18
Transit Network. 22
Multimodal Intersection \& Street Investments 23
Fremont Street 27
Programs and Policies 28
Wayfinding and Informational Signage 28
Sidewalk Maintenance and Rehabilitation 28
Amenities 29
Education and Enforcement 29
Prioritization \& Implementation 30
Prioritization Criteria 30
Cost Estimates 31
Prioritized Projects. 32
Implementation Considerations. 41
Conclusion 42

Appendices

Appendix A: Existing Conditions Memorandum
Appendix B: Standard Drawings
Appendix C: Signal and All-way Stop Warrant
Appendix D: Fremont Street Conceptual Designs
Appendix E: Fremont Street Cost Estimates
Appendix F: Prioritization Matrix
Appendix G: Cost Estimates
Appendix H: April 26, 2021 Recommendations Presentation
Appendix I: Maps in 11×17

List of Figures and Tables

Figure 1: Additional crossing opportunities 7
Figure 2: Conceptual design of Fruita Monument High School crossing 8
Figure 3: Major Arterial cross-section 11
Figure 4: Major Arterial (enhanced travel corridor) cross-section 12
Figure 5: Major Collector cross-section 12
Figure 6: Minor Collector (Residential and Commercial) cross-section 13
Figure 7: Minor Collector (Industrial) cross-section 13
Figure 8: Residential cross-section 14
Figure 9: Street functional classification 15
Figure 10: Priority sidewalk projects 17
Figure 11: Proposed bikeways \& trails network 19
Table 1: Proposed bicycle projects 20
Figure 12: Existing transit network 22
Table 2: Multimodal intersection investments 24
Table 3: Multimodal street investments 25
Figure 13: Multimodal intersection and street investments 26
Table 4: Fremont Street planning level cost estimate 27
Table 5: Project implementation phases 30
Figure 14: Community support for various project types 31
Table 6: Short-term (0-3 Years) projects: sidewalk projects 32
Table 7: Short-term (0-3 Years) projects: bicycle projects 33
Table 8: Short-term (0-3 Years) projects: multimodal intersection and street projects 34
Table 9: Medium-term (4-6 Years) projects: sidewalk projects 34
Table 10: Medium-term (4-6 Years) projects: bicycle projects 35
Table 11: Medium-term (4-6 Years) projects: multimodal intersection and street projects 35
Table 12: Long-term (7-10 Years) projects: sidewalk projects 36
Table 13: Long-term (7-10 Years) projects: bicycle projects 37
Table 14: Long-term (7-10 Years) projects: multimodal intersection and street projects 37
Figure 15: Phased sidewalk projects 38
Figure 16: Phased bicycle projects 39
Figure 17: Phased multimodal and intersection projects 40

This page intentionally left blank.

Executive Summary

The Fruita Circulation Plan provides a path to move the City of Fruita towards the following vision, established as a part of this planning process:

The City of Fruita has a safe, convenient, and well-maintained multimodal street network that equitably serves all users traveling within or through the City. It has a transportation system that balances access and mobility through multimodal improvements on existing roads as well as coordinated planning with new development. Transportation facilities contribute to the character of the community by providing inviting streetscapes, off-street connections, and attractive gateways to the community.

The Circulation Plan was created through a community-based, data driven process between November 2021 and October 2022. Comprehensive public and stakeholder engagement, both virtual and in-person, was essential in informing existing challenges and proposed solutions. The outcomes from community engagement were considered in tandem with an existing conditions analysis, data collection, and field observations. The recommendations span four primary categories:

- Pedestrian enhancements
- Bicycle enhancements
- Multimodal and street enhancements
- Policies and programs

All infrastructure projects were prioritized based on how well they met the City's goals and are supported by the community. Planning level costs were also determined in order to develop a fiscally constrained plan for the short, medium, and long-term. This phasing provides guidance for the City to continue to enhance and expand the multimodal transportation system as funding becomes available in order to create a comfortable transportation experience for all ages and abilities.

Maps of recommendations as a part of this plan are shown in 11×17 in Appendix I.

Fruita’s Transportation Vision

The following vision was established by building off of previous planning efforts and a comprehensive community engagement process. This vision serves as a guidepost for the City for both short-term implementation and long-term planning.

The City of Fruita has a safe, convenient, and well-maintained multimodal street network that equitably serves all users traveling within or through the City. It has a transportation system that balances access and mobility through multimodal improvements on existing roads as well as coordinated planning with new development. Transportation facilities contribute to the character of the community by providing inviting streetscapes, off-street connections, and attractive gateways to the community.

Planning Process

The Fruita Circulation Plan was informed by a comprehensive outreach process that gathered input from many residents, employees, and stakeholders from across the City. The goals of the engagement process are to empower the broader community, create public awareness and interest, provide decision-makers with guidance and continued involvement, and maintain communication through multiple channels. The project took a multi-pronged approach to seeking feedback to ensure there was a method and available time for all community members to provide meaningful input. Public outreach occurred through online surveys, an interactive mapping tool, an in-person community meeting, an intercept event, print and media relations, and detailed information provided on the Plan website. Outreach related to transportation from the recent Comprehensive Plan was also used to inform the Circulation Plan. Outreach was collected in two phases, as described further in this section.

Phase I

The first phase of outreach was completed in February-March 2021 in order to supplement the existing conditions analysis and better understand the current challenges and barriers to travel within and through Fruita. This included an online survey and webmap, which received almost 300 responses. This information was critical in informing the plan's recommendations and priorities.

Phase II

The second phase of outreach was completed in July-August 2021. This phase of outreach presented draft recommendations to community members, seeking input on tweaks or additions to this set of multimodal recommendations. Summer outreach also sought feedback on priorities, to inform the short, medium and long-term project lists presented in this Plan. Outreach in Phase II included a virtual component (online survey) and in-person component (open house and tabling at the Farmers Market).

Key Themes

The key themes that emerged from the outreach process are as follows:

- Improved connection across the railroad on the east side of the City
- Appreciation for the current trail network but desire to have improved access and signage to navigate to trails
- More wayfinding and information signage
- Awareness and education for all users on sharing the road between people driving and people biking and increase compliance of traffic laws
- Confusion at the roundabouts on SH 340
- Confusion of the roundabout around Circle Park
- Accommodating growth in travel demand as Fruita expands and densifies
- Unsafe and inefficient conditions for all modes near the schools
- Unsafe and inefficient conditions for all modes near the City Market
- Completion of missing sidewalk gaps
- Improved sidewalk maintenance

Existing Conditions

The Circulation Plan must be underpinned by a thorough understanding of the current transportation network and how it serves Fruita and the surrounding region. See Appendix A for the complete Existing Conditions Memorandum.

The Circulation Plan updates and builds off the recommendations, goals, objectives, and vision set by recent plans for all transportation modes. It considers and is consistent with the community's priorities and values identified in these planning efforts while also performing its own comprehensive outreach effort acknowledging that these values evolve over time. With that, this plan reviewed the following previous planning efforts:

- Land Use Code Update (current)
- Parks, Health, Recreation, Open Space and Trails Plan (2020)
- Fruita in Motion Comprehensive Plan (2020)
- Grand Valley Regional Transportation Plan (2019)
- Pedestrian and Bicycle Circulation Study (2011)

In addition to the previous plans review, an overview of existing conditions by category is included in Appendix A. This section includes a summary of the City of Fruita's roadway network, bicycle and pedestrian networks, and transit network.

The City of Fruita has just over 110 total miles of roadway. I-70, Highway 340, and Highway 6 provide regional connections to nearby communities while a network of arterials and collector streets serve local mobility needs.

The City's bicycle network consists of off-street facilities (trails) and on-street facilities (bike lanes and wide shoulders). The City of Fruita currently has strong backbones of a bicycle network with almost 30 miles of City trails, just under 9 miles of wide shoulders, and two miles of bike lanes. This network is missing key connections, which will be addressed as a part of the Circulation Plan.

The City of Fruita currently has a robust sidewalk network. The City has 110 miles of existing sidewalk; however, only 400 feet of that sidewalk is wider than four feet. There are 21 miles of missing sidewalks within City limits. Areas with sidewalk gaps are primarily on the outer edge of the City where pedestrian demand is lower.

Grand Valley Transit (GVT) operates one route within Fruita, Route 8. Route 8 operates at an hourly frequency from 5:00 am to $8: 30$ pm and travels between Grand Junction's West Transfer Facility and Fruita.

Big Moves

Fruita's Active Circulation Plan leads with three Big Moves. These Big Moves represent areas of broad importance to the Fruita community that require complex solutions. In some cases, short-term improvements or projects can help address the problems associated with these Big Moves. In other cases, long-term investments are necessary.

Additional Crossings of Major Barriers

The Problem

Multiple major barriers bisect Fruita and create connectivity challenges. Interstate 70 (1-70) and the Union Pacific Railroad (UPRR) are the most significant barriers, although the US Highway 6 (US-6) and the Colorado River are also barriers. Currently, there is one multimodal overcrossing of I-70 and the UPRR at State Highway 340 (SH 340), and an additional trail crossing west of SH 340 along Little Salt Wash.

For people driving, these barriers require out-of-direction travel and concentrate inter-City traffic on a limited number of streets. For people walking and biking, the out-of-direction travel distance that these barriers create makes walking and biking inconvenient. Additionally, people walking and biking crossing at SH 340 must use a multi-use path with little horizontal separation from moving traffic and navigate turning conflicts at intersections on either side. City staff indicated that they have received concerns from community members in the past regarding south Fruita residents, and students, crossing I-70 and the UPRR at-grade to avoid walking out-of-direction to SH 340. Community members also identified these concerns in the Active Circulation Plan survey.

Recommendations

Fruita should pursue additional crossings of major barriers. In the near-term, raising the fence on the east side of the SH 340 overcrossing can improve the perceived safety of the multi-use path. Additionally, fencing along the UPRR and I-70 near Fruita Monument High School would discourage at-grade pedestrian crossings. In the long-term, Fruita should pursue new grade separated crossings of these barriers. The highest priority for a new grade separated crossing is near Fruita Monument High School. A later priority is for a separate multi-use trail crossing parallel to SH 340 .

Figure 1: Additional crossing opportunities

Figure 2: Conceptual design of Fruita Monument High School crossing

Connections from East Fruita to Grand Junction

The Problem

Fruita residents, workers, and visitors frequently travel between Fruita, Grand Junction, and other points east of Fruita. Additionally, most of Fruita's future land use growth will occur on the east side of the City. Currently, I-70 and U-6 accommodate most regional travel between Fruita and other parts of the region. However, there is only one I-70 interchange in Fruita at SH 340, generally towards the west side of the City. This limited I-70 connectivity creates out-of-direction travel and contributes to high through traffic volumes through downtown Fruita on Aspen Avenue. This lack of connectivity also increases the number of regional through trips on US-6 that I-70 would better serve.

Recommendations

The Grand Valley 2045 Regional Transportation Plan Update includes two projects that will help address this problem. Fruita should support these projects and collaborate with regional partners on their implementation.

US-6 corridor and intersection improvements: this is a CDOT 1-4-year project between 15 Road and 22 Road that will add a center turn lane and other intersection turn lane improvements.

I-70 and 19 Road interchange: this is a long-term project to add a new, full-access interchange to I-70 at 19 Road.

Encourage East-West Connectivity other than Aspen Avenue

The Problem

Many people headed from I-70 to east Fruita use Aspen Avenue as a through street. Multiple characteristics of the built environment contribute to this: limited connectivity from I-70 to east Fruita, limited crossings of the Independent Ranchmens Ditch, and the design and operation of intersections that encourage this through traffic. East of Plum Street and Mesa Street, downtown Fruita is pedestrianoriented with high numbers of people walking and biking along and across streets. Community members identified concerns walking and biking along and across Aspen Avenue in downtown Fruita in the Active Circulation Plan survey.

Recommendations

Over time, Fruita should design and operate the street network to discourage through traffic on Aspen Avenue. Decisions to support this recommendation may include expensive, long-term solutions such as the I-70 and 19 Road interchange to create alternate routes between I-70 and east Fruita or additional crossings of the Independent Ranchmens Ditch. However, the City can also use shorter-term solutions such as the orientation of STOP signs in the area and the signal operations/timing at the SH 340/Aspen Avenue intersection to discourage through traffic on Aspen Avenue. Pabor Avenue, McCune Avenue, and US-6 are the primary alternate through routes from SH 340 to destinations east of downtown.

Street Functional Classification

Figure 9 shows Fruita's proposed Street Functional Classification Map. This map and other maps of recommendations as a part of this plan are shown in 11 x 17 in Appendix I. Fruita uses five functional classifications: Major Arterial, Minor Arterial, Major Collector, Minor Collector, and Residential. Appendix B includes full standard drawings for each functional classification. Snapshots of each cross-section are shown in Figure 3 through Figure 8.

Figure 3: Major Arterial cross-section

Figure 4: Major Arterial (enhanced travel corridor) cross-section

Figure 5: Major Collector cross-section

*alternate: residental with no center turn lane

Figure 6: Minor Collector (Residential and Commercial) cross-section

Figure 7: Minor Collector (Industrial) cross-section

Figure 8: Residential cross-section

Future Street Classification

$\begin{array}{ll}\text { _ CDOT Highway Interstate } & \text { Minor Arterial } \quad \text { __ Major Collector }\end{array}$City Boundary
\qquad Urban Growth Boundary

Figure 9: Street functional classification

Walking, Biking, and Transit Networks

Fruita's transportation system will provide robust networks for people driving, walking, biking, or riding transit. Whereas a street's functional classification addresses the mobility function of a street for people driving, separate proposed networks for walking, biking, and transit address the multimodal function of a street.

Walking Network

Walking is a common way for people in Fruita to get around. Downtown Fruita and its surrounding neighborhoods are relatively dense so that trip lengths are short. Additionally, special destinations such as schools and places of worship generate regular walking trips.

Fruita has sidewalks along many of its existing streets. In general, sidewalks on residential or low-volume streets are often four feet or less in width (according to the [Proposed] Public Rights-of-Way Accessibility Guidelines, the minimum continuous clear width of pedestrian access routes is four feet). Sidewalks on arterial or collector streets are often wider than four feet. Fruita's sidewalks are typically attached to the back of curb, rather than detached with a landscape buffer. Community members identified sidewalk gap completions and sidewalk widenings as a priority through the Active Circulation Plan survey.

Through application of the street standards with new development, Fruita will work with the development community to build sidewalks on developing parcels. Within the already built-up part of Fruita and adjacent to developed parcels, Fruita will continue to prioritize sidewalk gap projects over widening of existing sidewalks. Sidewalk gaps along arterial and collector streets will take priority over sidewalk gaps along residential streets, though Fruita's intent is to eventually complete sidewalk gaps on all streets. Within Fruita's existing City limits there are approximately 16 to 19 miles of missing sidewalks along arterial and collector streets, a reduction over recent years as the City has completed many sidewalk gap projects. At $\$ 170-\$ 270$ per linear foot, these sidewalk gaps will cost $\$ 14$ million to $\$ 27$ million (2021 dollars) to complete. Figure $\mathbf{1 0}$ shows a map of Fruita's priority sidewalk gap projects.

Sidewalk Gap Completion Phase

Figure 10: Priority sidewalk projects

Biking Network

As a national destination for mountain biking and road biking, many Fruita residents, workers, and visitors enjoy biking both recreationally throughout the region and for transportation in Fruita. Fruita's Parks, Health, Recreation, Open Space, and Trails Master Plan (PHROST) identifies several proposed trail segments including along Little Salt Wash and the Independent Ranchmens Ditch. Additionally, Fruita has successfully coordinated with many recent developments to incorporate trails or connections to the trails system. The on-street bikeways system of bike lanes and bike routes can further compliment the trails system to provide both connectivity to the regional trails system and comfortable connectivity for biking within Fruita.

Currently, many of Fruita's arterial and collector streets have shared parking/bike lanes. Demand for onstreet parking is low in many areas where residences have dedicated, off-street parking. Additionally, even a limited numbers of parked cars can cause a significant decrease in user comfort. Community members identified a lack of on-street bike lanes and parking in existing shared parking/bike lanes as a barrier to traveling by bike in the Active Circulation Plan survey.

Through application of the street standards with new development, Fruita will work with the development community to build protected bike lanes (bike lanes separated from travel lanes by a vertical buffer) and buffered bike lanes (bike lanes separated from travel lanes by a painted buffer) on new streets or adjacent to developing parcels. Within the already built-up part of Fruita, Fruita will formalize bike lanes or buffered bike lanes (eliminating shared parking/bike lanes) on streets to provide inter-City connectivity. Figure 11 shows a map of Fruita's proposed biking network and Table 1 shows the complete list of proposed projects. To achieve these bikeways on existing streets, Fruita will accept the following minimum dimensions for cross-section elements on already built-out streets:

- On-street parking: 7-feet (including gutter)
- Bike lanes: 5 -feet
- Travel lanes: 11 -feet

Figure 11: Proposed bikeways \& trails network

Table 1: Proposed bicycle projects

Facility Type	Corridor	Extent	Extent	Description
Bike Lane	18.5 Road	Ottley Avenue	Castle Court	Could also consider multiuse path adjacent to roadway; to provide access to Monument Ridge Elementary School
Bike Lane	Aspen Avenue	Hwy 6	Hwy 340/Cherry Street	Will need to restripe and potentially widen face of curb to face of curb to fit or remove turn lane
Bike Lane	Coulson Street	Ottley Avenue	Pabor Avenue	
Bike Lane	Coulson Street	Pabor Avenue	Hwy 6	Will need to remove parking on one side
Bike Lane	Grand Avenue	Hwy 6	Pine Street	Will need to remove parking on one side west of Pine; east of Pine formalize existing shoulder
Bike Lane	J. 6 Road	Pine Street	Fremont Street	Formalize existing shoulder
Bike Lane	Maple Street	Hwy 6	Ottley Avenue	44' cross-section: 7' parking, 5^{\prime} bike lanes, 10^{\prime} travel lanes (versus 11^{\prime} combined parking/bike lane and 11’ travel lanes)
Bike Lane	Maple Street	Trail Access	Sabil Drive	Will transition to sidewalk before narrows for bridge
Bike Lane	Mesa Street	Ottley Avenue	W Meadow Avenue	
Bike Lane	Mesa Street	W Meadow Avenue	City limit	Upgrade from wide shoulders to bike lane
Bike Lane	Ottley Avenue	Hwy 6	19 Road	Upgrade existing shoulder, discontinuous bike lane; prohibit parking for buffered bike lane; if onstreet parking use 10' travel lane, 7' parking lane, and bike lane
Bike Lane	Pabor Avenue	Coulson Street	Mesa Street	
Bike Lane	Pine Street	Hwy 6	L Road	Formalize wide shoulder for part; 44' north of wash, can maintain parking
Bike Lane	Raptor Road	Hwy 340	Trail	
Bike Lane	Wildcat Avenue	Pine Street	East City limit	Formalize wide shoulder to bike lane

Facility Type	Corridor	Extent	Extent	Description
Buffered Bike Lane	15 Road	Trail	Hwy 6	Major collector cross-section
Buffered Bike Lane	Hwy 340	Roundabouts	South City limits	6' bike lane, 3 ' Buffer, 12 ' travel lane, 11' travel lane, 12' TWLTL, 11' travel lane, 12 ' travel lane, 3^{\prime} buffer, 6 ' bike lane
Buffered Bike Lane	J Road	East City limit	20 Road	Major Arterial cross-section; need to widen roadway
Buffered Bike Lane	J. 6 Road	18.5 Road	19 Road	Major Collector cross-section
Buffered Bike Lane	Jurassic Avenue	Hwy 340	Mesa Street	
Buffered Bike Lane	Mesa Street	Riverfront Trail	Jurassic Avenue	
Sharrow	Aspen Avenue	Mesa Street	Maple Street	
Sharrow	Aspen Avenue	Hwy 340	Mesa Street	
Sharrow	Doug Drive	Little Salt Wash Park Path	Trail	To connect two trails
Sharrow	Gewont Lane	Coulson Street	Little Salt Wash Trail	
Sharrow	Marigold Lane	Trail access	Trail access	Add signage to connect trails
Sharrow	Pabor Avenue	Mesa Street	Mulberry Street	Sharrows EB and bike lane WB
Sharrow	Sabil Drive	Maple Street	Little Salt Wash Path	To connect trails
Trail	19 Road	City boundary	Hwy 6	Minor arterial cross-section
Trail	New alignment	Pine Street	Riverfront Trail	Grade separated crossing
Trail upgrades	Hwy 340	Roundabouts	South City limits	Upgrade existing trail to establish 10^{\prime} preferred ($8^{\prime} \mathrm{min}$) trail on both sides

[^0]
Transit Network

Grand Valley Transit's (GVT) Route 8 delivers a circulator pattern within Fruita generally on Pine Street, Ottley Avenue, Coulson Avenue, SH 340, McCune Avenue, and Aspen Avenue. Outside of Fruita, Route 8 connects to GVT's West Transfer Facility via US-6.

Fruita does not propose modifying transit routes, span, or frequency serving Fruita. However, Figure 12 includes a map of the existing transit network so that the City can coordinate other circulation investments with the transit network to improve transit access for Fruita residents, workers, and visitors. As development patterns shift and affordable housing projects are approved, modifications to Route 8 should be considered to provide transit access to high-density, transit-dependent residents.

Figure 12: Existing transit network

Multimodal Intersection \& Street Investments

This plan identifies multimodal intersection and street investments at locations where community members identified concerns related to safety or mobility through the Active Circulation Plan survey. Figure 5 shows the locations of multimodal intersection and street investments, and Table $\mathbf{2}$ and Table 3 includes a description for each intersection and corridor project, respectively. These projects may require a feasibility analysis prior to implementation consistent with or in addition to the studies/analyses identified in the table.

A signal warrant and/or all-way stop warrant was performed at three locations to confirm recommendations. The calculations for the warrants are shown in Appendix C. None of the three locations met the warrants to transition to a signal or all-way stop, however, it is recommended (and captured in the project list) that the intersections continue to be evaluated as development patterns shift.

- SH 340 \& Jurassic Avenue
- W Aspen Avenue \& Plum Street
- Pabor Avenue \& N Mesa Street

Table 2: Multimodal intersection investments

| ID | North-South
 corridor | corridor |
| :--- | :--- | :--- | :--- | Description | Consider intersection ahead warning signs on 16 Road and |
| :--- |
| 1 |
| 16 Road |
| 2 |

ID	North-South corridor	East-West corridor	Description
24	Pine Street	Hwy 6	Relocate utility box to improve visibility for right-turning vehicles; Reduce radius of NE corner to slow speeds of westbound right- turning vehicles
25	Pine Street	Ottley Avenue	Consider a traffic signal
26	Plum Street	Aspen Avenue	Evaluate intersection for all-way STOP or traffic signal

Table 3: Multimodal street investments

ID	Corridor	Extent		Extent
27				Description Evaluate removing right-turn lanes (EBRT approaching Plum Street, SBRT approaching City Market driveway) and adding continuous two-way left-turn lanes
28	Aspen Avenue	Hwy 340		Plum Street

Proposed Multimodal Intersection and Street Enhancements
(Intersection \qquadCity Boundary \qquad Urban Growth Boundary

Figure 13: Multimodal intersection and street investments

Fremont Street

Appendix D provides a conceptual design for Fremont Street between K 4/10 Road and Skiff Avenue. These recommendations build off of the concurrent work being performed on Fremont Street from Skiff Avenue to Hwy 6. These drawing show a varying cross-section between 60'-65', ADA ramp locations, and locations where additional ROW is needed. Recommendations are broken out into five phases.

Opinion of probable construction costs are identified by phase in Appendix E and summarized in Table 4. Cost estimates for the proposed Fremont Street Improvements were developed using publicly available bid summaries from the City of Grand Junction. These bid summaries, ranging from 2017 to 2021, include items similar to those proposed that were then averaged and adjusted for inflation. Costs for dissimilar proposed items were interpolated and adjusted from the most similar available costs. A 15\% design factor and 20% contingency were used.

Although Fremont Street is not identified in the short, medium, or long-term projects lists further in this report, the importance of this project has been identified and external funding should be pursued to plan, design, and implement the proposed Fremont Street per the phased approach in Appendix D.

Table 4: Fremont Street planning level cost estimate

Phase	Extents	Cost
1	Skiff Avenue to J Road	$\$ 1,291,297$
2	J Road to J 2/10 Road	$\$ 633,062$
3	J 2/10 Road to Aspen Avenue	$\$ 1,143,300$
4	Aspen Avenue to Ottley Avenue	$\$ 1,790,429$
5	Ottley Avenue to K 4/10 Road	$\$ 474,172$
Total	Skiff Avenue to K 4/10 Road	$\$ 5,332, \mathbf{2 6 0}$

Programs and Policies

This section highlights opportunities to meet the City's vision using programs and policies that incentivize alternative travel modes to the private vehicle, implement bicycle and pedestrian infrastructure, and support health and safety outcomes. Beyond simply maintaining and building physical infrastructure, programs and policies ensure that roadways, active transportation facilities, and transit services are efficient, effective, and intuitive. These programs and policies also align the City's transportation system with broader community values and move the City toward its vision for transportation. The key policy and program recommendations are:

- Wayfinding and informational signage
- Sidewalk maintenance and rehabilitation
- Amenities
- Education and enforcement.

Wayfinding and Informational Signage

The Circulation Plan recommends that Fruita develops a bicycle wayfinding and signage plan to help people better navigate the existing bicycle network and feel more comfortable riding somewhere new. Wayfinding signage should be prioritized anywhere an off-street trail terminates or when two bicycle corridors intersect. Signage in these locations should indicate where to go to continue on another low stress bicycle facility or give directions to major destinations nearby. An effective wayfinding system, especially one that is branded and includes distances or times, can encourage more people to bike because they can feel more confident navigating the system and staying on designated bicycle facilities. Wayfinding is especially important to guide visitors who may not be as familiar with Fruita's transportation network and key destinations.

Sidewalk Maintenance and Rehabilitation

Fruita's current sidewalk repair program (outlined in Section 12.04 .030 of the Fruita Municipal Code) states that the repair of any portion of a sidewalk "...be done by the owner of the lots or land adjacent to or abutting the improvement or repair". This program is intended to repair and/or replace sidewalks that are broken, spalling (presenting surface cracks and deterioration), or uneven. Property Owners within the Fruita City Limits may be eligible to participate in a cost-sharing sidewalk replacement program whereas the City will pay for a percentage of eligible sidewalk replacements and/or repairs. For 2021, the Sidewalk Replacement Program was funded at $\$ 30,000$ and the City will pay for up to 80% of the sidewalk repairs, which requires the Property Owner to only pay for 20% of the improvements.

Feedback from community members and stakeholders through this process noted that the current sidewalk repair ordinance that puts the responsibility on the property owner is not effective. The City of Fruita should evaluate funding and leading the sidewalk maintenance and rehabilitation program, to ensure that sidewalks are accessible and navigable to all ages and abilities.

Amenities

Providing amenities alongside trails and priority multimodal corridors helps improve the comfort of people traveling. The Parks, Health, Recreation, Open Space and Trails (PHROST) Plan identifies guidance on implementing amenities such as pedestrian-scale lighting, bike parking, seating, and trash receptacles. Lighting in particular should be prioritized along not just trails, but all multimodal transportation facilities.

Education and Enforcement

Education and enforcement of the rules of the road for both people biking and people driving is important to ensure a comfortable and safe transportation system. As Fruita implements new transportation patterns and facility types, education will be especially important for compliance of traffic laws. Education should be conducted year-round, with a focus during peak tourism season, when users of all modes are navigating Fruita for the first time.

Prioritization \& Implementation

Fruita will implement the Circulation Plan over time. The Circulation Plan is fiscally unconstrained and represents a long-term vision for transportation infrastructure in Fruita. As such, the City needs to prioritize projects to maximize benefits in the near-term. This section describes the prioritization process, cost estimates for projects, and project lists in the short, medium, and long-term (0-3 years, 4-6 years, and 7-10 years).

Prioritization Criteria

All recommended projects from the Circulation Plan were prioritized and grouped into a short, medium, long-term or beyond phases as shown in Table 5. This process assumes that Fruita's annual budget for transportation investments continues to be about $\$ 500,000 /$ year. These four phases provide a fiscally constrained approach for the City of Fruita moving forward and provide guidance on what projects to implement first. The specific rank of each project is shown in the tables in this chapter. The rank is the same for a number of projects when they are tied with the same score.

Table 5: Project implementation phases

Phase	Years	Budget
Short	$0-3$	$\$ 1,500,000$
Medium	$4-6$	$\$ 1,500,000$
Long	$7-10$	$\$ 2,000,000$
Beyond	$10+$	No limit

Prioritization Within Modes

The City applied three criteria to prioritize projects: Destination Access, Systemic Safety, and Community Support. These three criteria were applied in the prioritization of the bicycle project list and the multimodal intersection and street investments project list. Sidewalk projects were prioritized based on City staff judgment.

Destination Access describes how a particular project improves access for people using all travel modes to key destinations including commercial areas/parcels, schools, civic destinations (e.g., the library), parks, trailheads, and places of worship. Projects that access more destinations are a higher priority than projects that access few or no destinations.

Systemic Safety describes a project's potential for eliminating future fatal or severe injury crashes. Because people walking and biking are vulnerable to fatal or severe injury crashes even in low-speed environments, all walking and biking projects receive some level of Systemic Safety priority. Projects for
people driving on high speed streets (30 miles per hour or greater) also receive priority as high-speed crashes are more likely to result in fatalities or severe injuries.

Community Support describes how much support a project location received through the Active Circulation Plan survey.

Prioritization Between Modes

In order to prioritize projects between each mode, input from the community was applied. Figure 14 shows the results from a survey at the Plan's community meeting, asking attendees to demonstrate how they would like the City to distribute its budget amongst the three project types—sidewalk projects, bicycle projects, and multimodal and street projects. This proportional distribution was applied to the budget for the short, medium, and long-term phases.

Appendix F includes a detailed prioritization matrix that shows each project's score for each prioritization criterion.

Figure 14: Community support for various project types

Cost Estimates

Planning level per unit cost estimates were provided based on a synthesis of local bid summaries. These per unit costs were applied to the proposed project list in order to develop planning level cost estimates for each proposed project. A breakdown of assumptions and per unit costs is shown in Appendix G.

Prioritized Projects

Projects were prioritized and grouped into phases based on the criteria described in the previous section Table 6 through Table 14 show the project list for each mode (sidewalk, bicycle, and multimodal/street) under each phase (short, medium, and long-term). Figure 15, Figure 16, and Figure 17 show project phasing on the sidewalk gap, bicycle network, and multimodal and street enhancement maps respectively. The cost for roadway and multimodal projects that are categorized as an 'evaluation' or 'consideration' of a treatment assumes the cost of implementation in addition to the cost of the study.

Short-term (0-3 Years) Projects

Table 6: Short-term (o-3 Years) projects: sidewalk projects

Corridor	Length (feet)	Cost
K. 6 Road	1,322	$\$ 101,822$
K.6 Road	320	$\$ 24,610$
N Maple Street	56	$\$ 4,302$
N Maple Street	313	$\$ 24,133$
Pine Street	195	$\$ 15,043$
17 1/4 Road	434	$\$ 33,395$
Fremont Street	300	$\$ 23,093$
Fremont Street	241	$\$ 18,554$
Fremont Street	119	$\$ 9,199$
Fremont Street	479	$\$ 36,901$
Fremont Street	501	$\$ 38,611$
J.2 Road	143	$\$ 11,013$
J.2 Road	113	$\$ 8,715$
J.2 Road	326	$\$ 25,128$
J.2 Road	137	$\$ 10,517$
J.2 Road	179	$\$ 13,758$
J.2 Road	357	$\$ 27,507$
Mesa Street	167	$\$ 12,885$
N Mesa Street	278	$\$ 21,407$
Sum	$\mathbf{5 , 9 8 2}$	$\$ 460,593$

Table 7: Short-term (0-3 Years) projects: bicycle projects

Rank	Facility Type	Corridor	Extent	Extent	Length (miles)	Cost
1	Bike Lane	Ottley Avenue	Hwy 6	19 Road	2.6	\$17,052
1	Bike Lane	Pine Street	Hwy 6	L Road	2.1	\$13,535
1	Buffered Bike Lane	Hwy 340	Roundabouts	South City limits	0.5	\$29,466
4	Bike Lane	Coulson Street	Ottley Avenue	Pabor Avenue	0.3	\$1,626
4	Bike Lane	Wildcat Avenue	Pine Street	East City limit	0.4	\$2,813
4	Buffered Bike Lane	Jurassic Avenue	Hwy 340	Mesa Street	0.2	\$14,788
4	Trail upgrades	Hwy 340	Roundabouts	South City limits	0.5	\$244,770
8	Bike Lane	18.5 Road	Ottley Avenue	Castle Court	0.5	\$3,074
8	Bike Lane	Aspen Avenue	Hwy 6	Hwy 340/Cherry Street	0.2	\$1,417
8	Bike Lane	Coulson Street	Pabor Avenue	Hwy 6	0.2	\$1,116
8	Bike Lane	Maple Street	Hwy 6	Ottley Avenue	0.7	\$4,772
8	Bike Lane	Raptor Road	Hwy 340	Trail	0.2	\$1,526
8	Buffered Bike Lane	J Road	East City limit	20 Road	1.1	\$64,900
8	Sharrow	Aspen Avenue	Mesa Street	Maple Street	0.2	\$997
16	Bike Lane	Grand Avenue	Hwy 6	Pine Street	1.0	\$6,311
16	Bike Lane	Maple Street	Trail Access	Sabil Drive	0.1	\$434
16	Bike Lane	Pabor Avenue	Coulson Street	Mesa Street	0.3	\$1,633
16	Buffered Bike Lane	J. 6 Road/ Aspen Avenue	18.5 Road/ Fremont Street	19 Road	0.5	\$29,410
16	Buffered Bike Lane	Mesa Street	Riverfront Trail	Jurassic Avenue	0.1	\$7,958
16	Sharrow	Aspen Avenue	Hwy 340	Mesa Street	0.3	\$1,264
16	Sharrow	Gewont Lane	Coulson Street	Little Salt Wash Trail	0.1	\$448
	Sum				12.1	\$449,310

Table 8: Short-term (o-3 Years) projects: multimodal intersection and street projects

Rank	ID	Location	Description	Cost
NA	NA	Multiple	Perform studies to hone recommendations list. Studies are identified in the following project lists.	\$50,000
1	27	Aspen Avenue from Hwy 340 to Plum Street	Evaluate removing right-turn lanes (EBRT approaching Plum Street, SBRT approaching City Market driveway) and adding continuous two-way left-turn lanes.	\$3,500
1	6	Cherry Street/Hwy 340 \& Aspen Avenue	Long: right-turn lanes as 30-60-90, Add speed tables to right-turn lanes; Short: add 2nd yield to NB approach and add flex delineators at striping.	\$9,000
1	11	I-70 Frontage Road east of roundabout	Enhance existing marked crosswalks at I-70 Frontage Road and SH-340 with Rectangular Rapid Flashing Beacons.	\$70,000
4	8	Fremont Street \& Hwy 6	Implement traffic signal.	\$283,000
4	19	Midblock at Wildcat Avenue	Add median to existing crossing.	\$7,000
4	$\begin{aligned} & 28 \& \\ & 32 \end{aligned}$	Circle Park and Aspen Avenue	Phasing of Downtown Streetscape Improvements. The full set of recommendations should be completed in the 'beyond 10-year timeframe'. In the short-term, crosswalks should be marked in addition to colored pavement and existing striping should be reinforced with flexible delineators.	\$100,000
Sum				\$522,500

Medium-term (4-6 Years) Projects

Table 9: Medium-term (4-6 Years) projects: sidewalk projects

Corridor	Length (feet)	Cost
17 Road	269	$\$ 20,678$
17 Road	643	$\$ 49,495$
17 Road	335	$\$ 25,807$
17 Road	883	$\$ 67,979$
17 Road	336	$\$ 25,895$
$181 / 2$ Road	467	$\$ 35,959$

Hwy 6	142	$\$ 10,951$
Hwy 6	142	$\$ 10,951$
J.2 Road	1,976	$\$ 152,189$
Ottley Avenue	99	$\$ 7,612$
Ottley Avenue	414	$\$ 31,876$
Ottley Avenue	571	$\$ 43,989$
Ottley Avenue	147	$\$ 11,285$
Sum	$\mathbf{6 , 4 2 4}$	$\$ 494,666$

Table 10: Medium-term (4-6 Years) projects: bicycle projects

Table 11: Medium-term (4-6 Years) projects: multimodal intersection and street projects

Rank	ID	Location	Description	Cost
4	7	 Ottley Avenue	On SW corner: Remove tree (if within ROW) Relocate utility pole; shift centerline; narrow crossing east leg, stripe bike lane through intersection.	$\$ 53,000$

4	9	Hwy 340 midblock south of roundabouts	Implement Rapid Rectangular Flashing Beacon (RRFB).	\$70,000
4	30	Hwy 340 at roundabouts	Raise railing height.	\$146,000
4	12	J. 3 Road \& Wildcat Avenue	Evaluate single-lane mini roundabouts: 100^{\prime} diameter; Shift crosswalk to be in front of the STOP bar if not roundabout.	\$20,000
4	17	Mesa Street \& Pabor Avenue	Complete all-way stop warrant study; consider mini roundabout; If keep existing, split up/reduce crossing distance with ped refuge island/median.	\$2,000
4	20	Midblock at Wildcat Avenue	Add median refuge between Fruita Monument High School and LDS Seminary.	\$7,000
4	22	Pine Street \& Aspen Avenue	Evaluate traffic signal or single-lane mini roundabouts: Pine Avenue \& Aspen Street (80^{\prime} diameter) (Cost includes evaluation plus implementation).	\$283,000
4	25	Pine Street \& Ottley Avenue	Evaluate a traffic signal (Cost includes evaluation plus implementation).	\$283,000
NA ${ }^{1}$	34	19 Road from J Road to Hwy 6	Widen from a 2-lane cross-section to a 3-lane cross-section. Sidewalk to be implemented with future development.	\$1,124,000 (additional funding necessary in the mid-term necessary to complete this project)
Sum				\$1,988,000

1. This project does not have a rank as it was not scored, but it was identified by City staff as a midterm project.

Long-term (7-10 Years) Projects

Table 12: Long-term (7-10 Years) projects: sidewalk projects

Corridor	Length (feet)	Cost
$181 / 2$ Road	1,086	$\$ 83,611$
$181 / 2$ Road	1,944	$\$ 149,689$
Aspen Avenue	442	$\$ 34,010$
Aspen Avenue	448	$\$ 34,464$

Aspen Avenue	195	$\$ 14,979$
Hwy 6	2,116	$\$ 162,969$
K.4 Road	1,631	$\$ 125,565$
Sum	$\mathbf{7 , 8 6 1}$	$\mathbf{\$ 6 8 5 , 2 8 7}$

Table 13: Long-term (7-10 Years) projects: bicycle projects

Rank	Facility Type	Corridor	Extent	Extent	Length (miles)	Cost
30	Sharrow	Doug Drive	Little Salt Wash Park Path	Trail	0.1	$\$ 364$
30	Sharrow	Marigold Lane	Trail access	Trail access	0.1	$\$ 455$
	Sum				$\mathbf{2}$	$\mathbf{\$ 8 1 9}$

Table 14: Long-term (7-10 Years) projects: multimodal intersection and street projects

Rank	ID	Location	Description	Cost
4	10	Hwy 340 \& Jurassic Avenue	Evaluate a traffic signal (Cost includes evaluation plus implementation).	$\$ 283,000$
4	33	Plum Street from Aspen Avenue to McCune Avenue	Evaluate removing right-turn lanes (SBRT approaching City Market driveway) and adding continuous two-way left-turn lanes	$\$ 3,500$
26	31	Hwy 6 \& Pine Street	Restripe to provide wider shoulder on north side (8') to improve sight lines.	$\$ 31,700$
26	13	Maple Street \& Hwy 6	Evaluate a traffic signal (Cost includes evaluation plus implementation).	$\$ 283,000$
26	15	Maple Street \& Ottley Avenue	Consider a roundabout or traffic signal (Cost includes evaluation plus implementation of a traffic signal).	$\$ 283,000$
26	16	Mesa Street \& Aspen Avenue	Evaluate converting each approach to stop control. $\$ 8,000$ Sum	$\$ 892,200$

Sidewalk Gap Completion Phase

Figure 15: Phased sidewalk projects

Figure 16: Phased bicycle projects

Proposed Multimodal and
Intersection Street Enhancements

Phase

City Boundary

Figure 17: Phased multimodal and intersection projects

Implementation Considerations

As proposed high-priority projects approach implementation, there are a number of factors to consider to help guide the construction of projects to ensure they are completed in a streamlined, cost-effective, and sustainable way.

Funding Sources

As additional funding becomes available, the City of Fruita can allocate new funding resources towards implementing currently unfunded projects. The funding landscape is competitive and often requires City departments to enter the planning phase thinking about grant requirements that will set the City up for success in being awarded grants. A critical step in obtaining external grants is having project priorities identified in a transportation plan that are supported by the community and elected officials. Many of the projects in this plan could be a grant funded project. It will be critical to have the projects "shovel ready" so that the funding can be used for implementation. In most cases, the list of external funding sources requires local matching funds.

Funding sources will continue to change between 2021 and 2050, but this section identifies grant and funding streams available as of September 2021. This section identifies the funding sources that supplement existing funding streams in Fruita.

Federal

- Federal Highway Safety Improvement Program (HSIP)
- USDOT Rebuilding American Infrastructure with Sustainability and Equity (RAISE) (formerly BUILD and TIGER)
- Infrastructure for Rebuilding American (INFRA)

State

- CDOT Funding Advancements for Surface Transportation and Economic Recovery Act (FASTER)
- Safe Routes to School (SRTS)
- Great Outdoors Colorado (GOCO)

Regional

- Regional Priority Program
- Multimodal Options Fund
- GVMPO Metropolitan Planning
- Transportation Alternatives

Local
Local funding sources can include vehicle registration and title fees, impact fees, other development impact fees, tax-increment financing, household utility fees, voter-approved bond, lodging tax, document stamp taxes, employment-based fees, and property, sales and use taxes.

Implementing Agencies

The City of Fruita should coordinate both internally and externally to implement proposed projects in a manner that ensures efficiency, potential cost savings, and the most effective long-term solutions. The Engineering Department should coordinate with Parks \& Recreation, Planning and Development, and Public Works will be important to make sure there is a seamless connection between transportation facilities and trails, new development, and other investment in the right of way. The City should also coordinate with external partners including Grand Junction, Public Lands, Mesa County, Grand Valley Regional Transportation Planning Organization, and Grand Valley Transit. This collaboration will allow for a seamless travel experience for users across the region, opportunities to leverage funding sources, and consistency with future planning efforts.

Phasing

Although most projects are listed in this plan as a single project, Fruita and relevant municipalities should consider the phasing of projects, as appropriate. This means that projects can be completed for part of the defined limits or only including part of project description, if deemed appropriate. This desire to implement projects in a phased approach may arise if there are opportunities through partnerships, funding sources, repaving schedules, or changes in project needs. For example, a grant specific for active transportation may fund the bicycle and pedestrian components of a multimodal project but not the roadway components.

Conclusion

The Fruita Circulation Plan is a long-term transportation and mobility plan that will serve as a guide for the City as growth continues to occur. Many projects, programs, policies, and studies are recommended for all modes of transportation (vehicle, transit, bikes, and walking) to help maintain or improve the quality of life for the City's residents and visitors.

Creating a plan far in advance provides the City with a blueprint for funding requests to implement any recommendations as well as to work on the preservation of the right-of-way to either provide additional roadway capacity, enough curb space for transit stops and stations, and/or safe pedestrians and bicycle facilities.

In the future, new forces and emerging technologies will impact Fruita and most communities around the globe. Examples of these include telecommuting, microtransit, electric vehicles, autonomous vehicles, and many others that will present challenges but also opportunities to better serve the communities. As these continue to appear, growth continues to occur, and projects implemented, the City should continue to track the success of the plan or make adjustments and modifications if not achieving the desired goals.

Appendix A: Existing Conditions Memorandum

FEHRケPEERS

Memorandum

Date: \quad March 24, 2021
To: Sam Atkins, City of Fruita
From: Charlie Alexander and Carly Sieff, Fehr \& Peers
Subject: Fruita Circulation Plan: Existing Conditions
DN20-0673

Introduction

Fruita's Circulation Plan is a multifaceted effort to update the City's street network and bicycle and pedestrian facilities through infrastructure, policies, and programs. The Plan must be underpinned by a thorough understanding of the current transportation network and how it serves Fruita and the surrounding region. The Circulation Plan addresses all modes operating within the City—people driving, walking, biking, and taking transit. This existing conditions memo provides a review of previous plans as well as a snapshot of the multimodal infrastructure and services.

Previous Plan Review

The Circulation Plan will update and build off the recommendations, goals, objectives, and vision set by recent plans for all transportation modes. The Circulation Plan will identify accomplishments from previous planning efforts, highlight any actions not yet taken, and provide new opportunities for improving local and regional transportation options in Fruita. These previously completed plans also included extensive public outreach and stakeholder engagement efforts to establish visions for the community, policies, and goals. It is important that the Circulation Plan considers and is consistent with the community's priorities and values identified in these planning efforts while also performing its own comprehensive outreach effort acknowledging that these values evolve over time. The City has also grown and implemented a number of
recommendations since the adoption of these plans; the Circulation Plan will provide updates that reflect these changes and progression. The Circulation Plan will build off of the analyses and recommendations in these planning efforts. Reviewed plans consist of:

- Parks, Health, Recreation, Open Space and Trails Plan
- Fruita in Motion Comprehensive Plan
- Land Use Code Update
- Grand Valley Regional Transportation Plan
- Pedestrian and Bicycle Circulation Study

Land Use Code Update (Current)

The goal of the Land Use Code Update is to draft a Code that is adaptable, flexible, yet effective as Fruita continues to expand and change. What is paramount is to ensure that the Code is succinct, well-organized, and easily understandable. The update will carry forward the goals of the Comprehensive Plan and make them actionable through the land use code. The process of updating the Code will include looking at comparable communities, both in Colorado and in different parts of the U.S. to learn best practices and to incorporate the most effective strategies. The team will also analyze different types of code, from form-based to performance-based, to help Fruita find what works best, and tailor it to Fruita's specific needs. The outcomes from the land use code update will inform the Circulation Plan by identifying locations of increased density and transportation demand that will need enhanced transportation facilities. The process to update the code is anticipated to last through mid-2021.

Fruita Parks, Health, Recreation, Open Space and Trails (PHROST) Plan (2020)

The vision of the Parks, Health, Recreation, Open Space, and Trails (PHROST) Master Plan is to act as a long-range planning and implementation document which will guide future development of parks, health, recreation, open space, and trails within the City. The key outcomes of the Plan are to:

- Evaluate, inventory, collect and compile data on existing parks, open space, trails, and recreation facilities;
- Develop a profile of existing and projected PHROST-related community needs;
- Establish guiding principles for the management of parks and recreation services in Fruita;
- Define park and facility standards, levels of service, and definitions for each type of park and facility;
- Define program standards which include a list of policy criteria;
- Develop a master plan for Council adoption that has implementation strategies along with an action plan.

Table 1 and Table 2 shows the recommendations for parks/facilities and trails, respectively, per the PHROST Plan. Figure $\mathbf{1}$ and Figure $\mathbf{2}$ show these recommendations spatially.

Table 1: PHROST Park and Facilities Recommendations

Site	Improvements	Trigger	Capital Estimate	Estimated O\&M Impact
High Priority				
Reed Park	Gathering space, open turf, skatepark, basketball courts, parking	Community need and LOS gap reduction; grant funding approval	$\begin{aligned} & \$ 900,000 \\ & \text { to } \\ & \$ 1,000,000 \end{aligned}$	Reduction in O\&M
Little Salt Wash Park Expansion (Wills Property)	Parking, pickleball courts, edible garden, pathway, restrooms, storage facilities, irrigation pump station	Easement requires action	$\begin{aligned} & \$ 1,000,000 \\ & \text { to } \\ & \$ 1,200,000 \end{aligned}$	\$40,000 per year
Medium Priority				
Lagoon Development Area (planning phase)	Plan for pavilion, parking, fieldhouse, with courts, infrastructure, off-leash dog park, synthetic turf fields	Community need, economic development, and public-private partnership opportunity	In-house	-
Circle Park	Park Square pedestrian and landscape improvements	Safety is prioritized	$\begin{aligned} & \$ 2,600,000 \\ & \text { to } \\ & \$ 2,700,000 \\ & \hline \end{aligned}$	None
Civic Center Memorial Park	Infrastructure and landscape improvements (CCMP and Downtown Fruita MP)	Community and maintenance needs	$\begin{aligned} & \$ 550,000 \\ & \text { to } \\ & \$ 600,000 \end{aligned}$	Reductions in O\&M
Fruita Community	Further determine specific needs and	Service area of FCC between 25,000-	\$50,000	-

Center Expansion \& Orr Park Renovation Feasibility Study	possibilities for expansion of FCC to accommodate capacity needs	30,$000 ;$ annual visitor use consistently exceeds 125,000		
Fruita Community Center Expansion \& Orr Park Renovation Construction	 supply storage and pump room; add outdoor spray park, parking expansion	Feasibility study demonstrates need	Dependent upon improvements	
Wastewater Treatment Site	Signage and wayfinding	Acreage for a large neighborhood or community park	Population growth exceeds 200 people in southeast area of the UDB	TBD

Table 2: PHROST Trail Recommendations

Location		
Approximate Length (Miles)		Cost Estimate (paved trail construction only; $\$ \mathbf{5 0 8}, \mathbf{2 0 0}$ per linear mile)
High Priority		
Little Salt Wash Trail: Fruita Community Center to Sierra Drive	0.50	$\$ 254,100$

Little Salt Wash Trail: Maple Street to Little Salt Wash Park	0.20	\$101,640
Little Salt Wash Trail: N Coulson Street to trail off Gewont Lane, across from Fruita Community Center	0.20	\$101,640
Little Salt Wash Trail: Wildwood Trail to Village at Country Creek Trail	0.50	\$254,100
Raptor Road to Colorado Riverfront Trail	0.50	\$254,100
CRSP Trail: Trail extension from Fruita State Park to Red Cliffs Drive	0.50	\$254,100
Medium Priority		
High School to Riverfront Trail (I-70 Pedestrian Bridge)	0.25	\$800,000-\$1,200,000
Fruita Riverfront Area Trail Loops	2-3	\$2,600,000-\$3,100,000
Snooks Bottom to Lagoon Property (Colorado River Pedestrian Bridge)	0.50	\$1,200,000-\$1,900,000
Lower Big Salt Wash Trail	0.25	\$1,270,500
Upper Big Salt Wash Trail	2.50	\$1,270,500
Upper Big Salt Wash Trail Connector to Etchart Park	1.00	\$508,200
Ranchman's Ditch Canal Trail	2.75	\$1,397,550
18 Road - North Fruita Desert/SRMA Segment	20.0	TBD with Mesa County to secure easements
Low Priority		
Grand Valley Canal Trail	4.00	\$2,032,800
Railroad Commuter Trail	2.5	\$1,270,500
GV Canal to Ranchman's Ditch Alignment	5.00	\$2,541,000
Adobe Creek Trail	2.50	\$1,270,500
Horsethief Canyon Road to Kokopelli Trail	5.00	\$900,000 (soft surface)

Figure 1: Current and Future Recreational Facilities

Fruita, CO Note: This map depicts conceptual trail locations for planning purposes only. This is in no way intended to be an active trails map. The City does

Figure 2: Trails framework
The PHROST Plan identifies pedestrian barriers in Fruita, such as major streets, highways, and rivers. Zones created by identified barriers, displayed as dark red lines in Figure 3, serve as discrete areas that are accessible without crossing a major street or another obstacle.

Figure 3: Barriers to walkability (shown as red lines)

New Trails

This sections describes new trails, as proposed by the PHROST Plan.

Little Salt Wash Trail

Segments of trail exist along Little Salt Wash, north of Ottley Avenue between 17 Road (Coulson) and $181 / 2$ Road (Freemont), at I-70 along the wash, and through Little Salt Wash Park. These trail segments should be connected to complete the system and extended through the community, from the Grand Valley Canal Trail to the Colorado Riverfront Trail. Near the Fruita Community Center, the trail will likely need to be accommodated by a widened sidewalk along Coulson. Road crossings should be clearly delineated, with special paving at crosswalks and warning flashers with signs. Drainage culverts exist under US6/50 and the railroad which can accommodate the trail connection to the Colorado River. Extension of the Little Salt Wash to the north to connect to BLM lands should be coordinated with Mesa County. A pedestrian bridge is also needed across Little Salt Wash from the park to the existing portion of the Little Salt Wash trail. This would provide access to the park for the neighborhoods to the north, which are currently underserved.

Big Salt Wash Trail

A segment of the Big Salt Wash Trail has already been constructed, from a trailhead near US6/50 on Ottley Avenue to Celestite Drive. A connection from this trailhead south to the Riverfront Trail should be constructed (Lower Big Salt Wash Trail). The Upper Big Salt Wash Trail should also be constructed north along Big Salt Wash to a point where it would connect with a proposed trail along the Grand Valley Canal near 171/2 Road, north of L Road. A trail could also eventually be extended north along the wash with the intent of connecting to the North Fruita Desert BLM lands, a popular mountain biking destination. Extension of the trail past the Grand Valley Canal should be coordinated with Mesa County, as it would be outside the city's urban growth area. The most feasible connection at this time to the BLM lands may be via widened shoulders on the county roads to the north.

Ranchman's Ditch Canal Trail

This canal runs diagonally southeast through Fruita, from Little Salt Wash to Adobe Creek and further east to Grand Junction. The canal corridor provides an opportunity for a trail that would connect to the $8 / 9$ school, high school, and proposed trail along Adobe

Creek. This trail would be approximately 2.75 miles in length along the north side of the canal. Maintenance requirements and water delivery issues associated with canal operations must not be negatively affected, and safety features installed if required. Although a significant capital expense, there should be consideration of piping Ranchman's Ditch to create an effective, safe, corridor.

Many other communities in Colorado have successfully partnered with irrigation companies to provide trails nearby irrigation canals in a safe and mutually beneficial manner. Currently, the City of Fruita requires a 50 -foot buffer from all canals for new development.

Grand Valley Canal Trail

This canal runs across the northern portion of Fruita, from Big Salt Wash, through Little Salt Wash to Adobe Creek. The corridor around to this canal provides a great opportunity for a 4-mile trail that would connect to a proposed Neighborhood Park and the proposed trail along Adobe Creek. Maintenance requirements associated with canal operations must be maintained, and safety features installed if required. Many other communities in Colorado have successfully partnered with irrigation companies to provide trails along irrigation canals in a safe and mutually beneficial manner. Currently, the City of Fruita requires a 50 -foot buffer from all canals for new development.

High School to Riverfront Trail

An overpass across I-70 near the high school is a high priority for the community. This bridge would allow students on the south side of I-70 to have direct access to the schools, as well as allow for a recreational trail connection to the Colorado River for residents in the northeastern portion of the community. A large drainage channel exists south of the frontage road to the river, providing a logical route for this trail. Design and construction of the I-70 pedestrian overpass should include provisions for bicyclists, and would require detailed design studies for its placement. Fruita will need to coordinate with CDOT for design, construction, maintenance, and funding for this bridge. An example of a similar bridge is located in Colorado Springs, across I- 25 near the downtown.

Adobe Creek Trail

This 2.5-mile trail is proposed to follow Adobe Creek, a major drainage in the eastern planning area of Fruita. Near-term trail development would start upstream at the Grand Valley Canal, follow Adobe Creek southwest, pass under US6/50, the railroad and I-70, and join the Riverfront Trail near Adobe Creek Golf Course. It is recommended that Mesa

County consider extending this trail from the Grand Valley Canal further to the northeast (beyond the Fruita planning area) to provide additional trail opportunities for Mesa County residents and visitors to the region.

Horsethief Road to Kokopelli Trail

A county road exists from the entrance to Snooks Bottom Open Space, approximately 5 miles to the west where it ends across the river from the Loma boat launch. This road could be used as an unpaved trail because vehicular traffic is very low. To connect to the Kokopelli Trail, a bridge would need to be constructed across the Colorado River at its west end.

Railroad Commuter Trail

An abandoned county road runs between the railroad and I-70 from the Co-Op Grain Elevator to 20 Road. This 2.5 -mile old road bed can be regraded and paved fairly easily for use as a commuter or higher speed recreational trail; however, some minor bridges and culvert crossings may be required. It would provide faster access for bicyclists towards Grand Junction than the Riverfront Trail, and could be extended by Mesa County beyond 20 Road.

Fruita in Motion Comprehensive Plan (2020)

Adopted by City Council in February 2020, Fruita in Motion: Plan Like a Local is the City's guiding document for land use development while also serving as departments' framework for budgeting, capital planning, partnering, and future planning. Fruita in Motion, Chapter 6, provided policies and actions which aim to positively impact the transportation options of the Fruita community. It is intended for this Circulation Plan to further these policies and actions by identifying the initiatives, partnerships, and infrastructure needed by the community to create the grounds for success. The vision for transportation as defined by Fruita in Motion is:

The City of Fruita has well-maintained and safe roadways, intersections, sidewalks, and trails. It has a transportation system that balances access and mobility through multimodal improvements on existing roads as well as coordinated planning with new development. Transportation facilities contribute to the character of the community by providing inviting streetscapes, off-street connections, and attractive gateways to the community.

The goals include:

- Designing streets based on land use and context
- Provide safe bicycle and pedestrian facilities to allow comfortable travel by foot or bike
- Make downtown pedestrian-oriented
- Support safe and efficient circulation through the city from I-70 and along State Highway 6\&50
- Maintain existing infrastructure

Figure 4 and Figure 5 show maps of the transportation facilities recommended as a part of Fruita in Motion. Potential cross sections from the Plan are also shown.

Figure 4: Parks, Recreations, Trails and Connectivity

Figure 5: Future Transportation Facilities

Downtown Enhanced Corridor
Angled parking may vary depending on street segment

Safe Route to School Corridor
Safe crossing every two blocks; two-way turn lane would alternate with median; left-hand sidewalk is a multi-use path

Multi-modal Corridor
Parking may be eliminated from one side as ROW width varies

Future Collector Corridor
Many of these roads are currently two-lane roads with no shoulder. Ensure turning lanes and pedestrian/bike facilities are built as development occurs.

Grand Valley Regional Transportation Plan (RTP) (2019)

The Regional Transportation Plan (RTP) was recently completed by the Grand Valley Metropolitan Planning Organization (GVMPO). The RTP is required under federal regulations and is critical for the region to assess, prioritize, and fund future transportation improvements. This Plan is required to be updated every five years, in order to capture demographic, land use, technology and economic changes in the region and broader transportation industry. This planning process examines current transportation issues and needs for travelers, workers, visitors, and residents of the region. The regional plan covers all of the Grand Valley, including the communities of Clifton, Collbran, DeBeque, Fruita, Gateway, Glade Park, Grand Junction, Loma, Mesa, Mack, Palisade, Whitewater and the rest of Mesa County.

The Grand Valley 2045 RTP, an update to the 2040 RTP, is the most recent update to the region's overall vision for future transportation infrastructure and investment. The 2045 RTP looks out 25 years into the future and identifies the types of investments and strategies needed to address transportation needs in the region. The RTP includes a list of critical regional priority projects anticipated to be implemented between now and 2045. Important but unfunded transportation needs are also described and may be implemented should additional funding become available. The long-term guidance developed in the Regional Transportation Plan (RTP) informs a short-term capital improvement plan, or the Transportation Improvement Program (TIP). The GVMPO works with the GVRTC and TAC to maintain the TIP which is used to designate funds for projects selected by local governments and the Colorado Department of Transportation. This Plan guides future investments in the region's transportation system to reduce congestion, improve safety, promote alternatives to the private automobile, enhance connectivity and comfort for those biking and walking, increase reliability and frequency of the transit system and maintain an efficient and effective transportation system that supports the regional economy. The 2045 RTP applies a performance-based approach to planning in order to quantify the prioritization of projects based on federally-determined and locally-informed performance measures. Regional investments are tied to newly established national and state goals for performance, condition, safety and mobility of the transportation system. This plan also provides GVMPO with the resources necessary to continue to measure the success of regional investments in delivering results and will communicate progress to the public and elected officials.

Figure 6 and Figure 7 show the recommended projects in Fruita from the RTP. The Circulation Plan will build off of these previously recommended projects.

Roadway Project Code	Project	Extent	Extent	Timeline	Cost
130	K. 4 Road	Pine St	Fremont St	2 years	\$2,000,000
122	19 Road	US 6	Ottley Ave	5 years	\$14,110,000
124	Coulson Street	Sunset Dr	K3/4 Road	5 years	\$996,000
125	Fremont Street	US 6	L Road	5 years	\$11,686,400
126	Grand Avenue	Cottonwoods subdivision (just east of Pine Street)	19 Road	5 years	\$1,992,000
128	13/4 Road	Fremont Street	19 Road	5 years	\$3,320,000
139	S. Fremont Street	Frontage Road	Adobe Falls Sub	5 years	\$665,000
141	S. Pine Street	Frontage Road	Adobe View North	5 years	\$149,400
143	Wildcat Ave.	1.3 Road	Fremont St	5 years	\$2,075,000

Figure 6: RTP Proposed Roadway Projects in Fruita

Active Transportation Project Code	Facility Type	Project	Extent	Extent	Timeline	Cost	Other Implementing agencies
34	Bike Lanes and Bike Route	K Road, Fruita/Mesa County	US 6	20 Road	20 years	\$2,085,000	Mesa County
51	Bike Overpass	Adjacent to the 1 - 70 SH-340 interchange			20 years	\$2,000,000	CDOT
53	Bike Path	Colorado Riverfront Trail	Monument View	Kokopelli Drive	20 years	\$5,000,000	
10	Bike Lanes and Bridge	18 Road	Riverfront Trail	J Road	20 years	\$428,000	
32	Shared Use Path	Riverfront Trail	SH-340	20 Road Overpass	20 years	\$3,991,000	
20	Shared Use Path	171/4 Road	SH-340	River Bridge	20 years	\$5,000,000	
29	Shared Use Path	Fruita Colorado River Bridge	Kingsview Road	Colorado River State Park, Fruita Section	20 years	\$5,654,000	
48	Shared Use Path	Big Salt Wash Fruita	Riverfront Trail	L Road	20 years	\$1,500,000	
52	Bike Overpass	18.5 Road over I- 70			20 years	\$2,000,000	
72	Wayfinding	Grand Valley Wayfinding Project	Palisade	Fruita	Years 1-4	\$300,000	Grand Junction, Mesa County

Figure 7: RTP Proposed Active Transportation Projects in Fruita

Pedestrian and Bicycle Circulation Study (2011)

This study examines the existing on-street pedestrian and bicycle network and makes recommendations for improvements to problem areas identified through resident input. It also provides the City with a toolkit of potential solutions that could be applied as needed. Creating safe routes to schools is a primary outcome of the study but signing improvements and 40 capital improvement projects (CIP) are also identified. Interstate 70, the Colorado River, the railroad, and drainages are recognized as barriers to mobility.

Maps and Analysis

In addition to the previous plans review, an overview of existing conditions by category is included in this document. This section includes a summary of the City of Fruita's roadway network, bicycle and pedestrian networks, and transit network.

Roadway Network

The City of Fruita has just over 110 total miles of roadway. I-70, Highway 50, and Highway 6 provide regional connections to nearby communities while a network of arterials and collector streets serve local mobility needs. The major north-south roadways are 19 Road, Pine Street, Maple Street, Highway 340, and Highway 30/Cherry Street. I-70, the railroad, and the Colorado River along the southern border of the city create challenges for continuous connectivity between the northern and southern segments of the City.

Over 60% of the total roadways within the City of Fruita are residential streets. Residential streets function as access points within neighborhoods to individual dwelling units and other neighborhood amenities such as parks. In addition to residential streets, other street classifications include arterial, major collector, and minor collector, as shown in Figure 8.

Traffic volumes provide a snapshot of existing (2018) vehicular volumes at specific locations, as shown in Figure 9. The travel demand model produced forecasted volumes for 2045, as shown in Figure 10. Many roadways that serve as the primary accesses through Fruita are forecasted to almost double in volume, including Highway 340, J Road, Aspen Avenue, and 19 Road. The Grand Valley is growing, with Fruita only taking up a small share of that growth. Fruita's population growth represents about 9% of the county's growth between 2010 and 2018. The population is expected to continue to grow, resulting in an increased demand for travel and driving.

Legend

Parks

- Schools

Roadway Classification

- Enhanced Travel Corridor
- Major Collector
—— Minor Collector
- Other Road Type
——Unclassified
----- Future Arteria
$===-$ Future ETC
--- - Future Major Collector
---- - Future Minor Collector
----- Future Unclassified

Figure 8
Previously Proposed Roadway Network

FehrłPeers

Bicycle Network

Figure 11 shows the existing bicycle network in Fruita, which consists of off-street facilities (trails) and on-street facilities (bike lanes and wide shoulders). The City of Fruita currently has strong backbones of a bicycle network with almost 30 miles of city trails, just under 9 miles of wide shoulders, and two miles of bike lanes. This network is missing key connections, which will be addressed as a part of the Circulation Plan. In addition to proposed connections, upgrading existing high-stress bike lanes to more comfortable facilities and creating bike lane standards will ensure new bike lanes are low stress and improve bicycle access across Fruita for all ages and abilities.

Pedestrian Network

The City of Fruita currently has a robust sidewalk network as shown in Figure 12. The City has 110 miles of existing sidewalk; however, only 400 feet of that sidewalk is wider than four feet. There are 21 miles of missing sidewalks within City limits. Areas with sidewalk gaps are primarily on the outer edge of the City where pedestrian demand is lower.

Transit Network

Grand Valley Transit (GVT) operates one route within Fruita, Route 8, as shown in Figure
13. Route 8 operates at an hourly frequency from $5: 00 \mathrm{am}$ to $8: 30 \mathrm{pm}$ and travels between Grand Junction's West Transfer Facility and Fruita.

Legend

Bike Facility Type

	City of Fruita Boundry	Bike Lane
	Parks	$-\quad$ Sharrow
\leq	Schools	- Wide Shoulder
國	Trailhead	$=$ Trail

Figure 11

Legend

City of Fruita Boundry Parks

- Schools

Sidewalk Width

-_ Less than or equal to 4 feet
———Greater than 4 feet
—— Missing Sidewalk

Figure 12 Existing Sidewalks

Legend

| City of Fruita Boundry | Grand Valley Transit Bus Stops |
| :--- | :--- | :--- |

Figure 13 Existing Transit Network

Appendix B: Standard Drawings

```
MAJOR ARTERIAL CORRIDOR
-SCALE: NTS
-ONE \(16^{\prime}\) ' CENTER TURN LaNe / Medan
-FOUR \({ }^{\prime} 0^{\prime}\) DRVE LANES
```

-FOUR $10^{\prime \prime}$ ORIVRE
-NO PARKING

MAJOR ARTERIAL (ENHANCED TRAVEL) CORRIDOR
-SCALE: NTS
-ONE 16^{\prime} 'CENTER TURN
-FOUR 10^{\prime} DRIVE LANES


```
MAJOR COLLECTOR (25-30 MPH)
    -SCLLE.NSS LTMEL LANES
    -ONE 11', TURN
    *)
-MLTERNATE: 6' DETACHED SIIEWALK W/ PARK STRIP
```


GREENWAY DRIVE COLLECTOR (INDUSTRIAL)
-SCALE: NTS
-TWO 10° TRAVEL LANES
-TWO 10', TRAVEL LAN
-ONE 11, TURN IANE

- - NO PAREIU
-BUFRERED BIIEE LANES
-DETACHED SIDEWALKS WITH PARK STRIPS

MINOR COLLECTOR (RESIDENTIAL \& COMMERCIAL)
-SCALE: NS

-ALTERNATER RESIDENTAL WITH NO CENTLE TU
-ALOW PARKING IF NO CENTER TURN LANE

*alternate: residental with no center turn lane

Appendix C: Signal and All-way Stop

Warrant

TRAFFIC SIGNAL WARRANT - SH 340 AND JURASSIC AVENUE

Note: Warrant is not met for the minimum 8 hours.

	SH 340	urassic Ave		
	Major	Minor		Warrant 2
	NB/SB	WB		
Number of Lanes	2	1		
				no
11:00	648	126		no
12:00	765	189		no
13:00	695	181		no
				no
				no
				no
17:00	635	96		no
				no
TOTAL	2743	592		

4 Hour Warrant Analysis - Existing conditions

Figure 4C-1. Warrant 2, Four-Hour Vehicular Volun

Note: 115 vph applies as the lower threshold volume for a minor-str approach with two or more lanes and 80 vph applies as the lower threshold volume for a minor-street approach with one lane.

Note: Warrant is not met for the minimum 4 hours under Warrant 2.

FEHRケPEERS

Major Street	SH 340			
Minor Street	Jurassic Ave			
Turn Movement Volumes	NB	SB	EB	WB
Left	0	0	0	0
Through	228	283	90	113
Right	0	0	0	0
Total	228	283	90	113

Sheet No of $\quad 1$
Project Fruita project
Scenario
Peak Hour AM

Major Street Direction

Figure 4C-3
Warrant 3, Peak Hour

* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.
Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

	Major Street	Minor Street	Warrant Met
	SH 340	Jurassic Ave	
Number of Approach Lanes	2	1	N
Traffic Volume (VPH) *	511	113	
Note:Traffic Volume for Major Street is Total Volume of Both Approches. Traffic Volume for Minor Street is the Volume of High Volume Approach.			

FehrłPeers

Major Street	SH 340			
Minor Street				
	Jurassic Ave			
Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	0	0	0
Through	265	391	72	132
Right	0	0	0	0
Total	265	391	72	132

Sheet No $\frac{2}{}$
Project Fruita Network project

Scenario
Peak Hour PM
Major Street Direction

Figure 4C-3
Warrant 3, Peak Hour

* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.
Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

	Major Street	Minor Street	Warrant Met
Number of Approach Lanes	SH 340	Jurassic Ave	
Traffic Volume (VPH) *	2	1	NO

* Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

TRAFFIC SIGNAL WARRANT - ASPEN AVE AND W PLUM ST

8 Hour Warrant Analysis - Existing conditions

Aspen Ave		Plum Street		Warrant 2
	Major	Minor		
	WB/EB	NB		
Number of Lanes	1	1		
			Warrant is Met (No)	no
				no
11:00:00 AM	666	165		no
12:00:00 PM	735	196		no
				no
				no
				no
4:00:00 PM	591	109		no
5:00:00 PM	645	119		no
				no
TOTAL	2637	589		

4 Hour Warrant Analysis - Existing conditions

Note: Warrant is not met for the minimum 4 hours under Warrant 2.

Figure 4C-1. Warrant 2, Four-Hour Vehicular Volun

*Note: 115 vph applies as the lower threshold volume for a minor-str approach with two or more lanes and 80 vph applies as the lowe threshold volume for a minor-street approach with one lane.

FehrłPeers

Major Street	Aspen Ave			
Minor Street				
Plum St				
Turn Movement Volumes				
	NB	SB	EB	WB
Left	0	0	0	0
Through	121	30	298	227
Right	0	0	0	0
Total	121	30	298	227

Sheet No 1 of 2

Project	Fruita project
Scenario	
Peak Hour	

Major Street Direction

$\mathrm{x} \quad$ North/South	
	East/West

Figure 4C-3 Warrant 3, Peak Hour

* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.
Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

	Major Street	Minor Street	Warrant Met
	Aspen Ave	Plum Ave	
Number of Approach Lanes	2	1	NO
Traffic Volume (VPH) ${ }^{*}$	151	298	

* Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

FehrłPeers

Major Street Minor Street	Aspen Ave Plum St			
urn Movement Volumes		SB	EB	
	NB			WB
Left	0	0	0	0
Through	124	39	449	216
Right	0	0	0	0
Total	124	39	449	216

Major Street Direction

Figure 4C-3
Warrant 3, Peak Hour

* Note: 150 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 100 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.
Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2006

	Major Street	Minor Street	Warrant Met
	Aspen Ave	Plum Ave	
Number of Approach Lanes	2	1	NO
Traffic Volume (VPH) *	163	449	

* Note: Traffic Volume for Major Street is Total Volume of Both Approches.

Traffic Volume for Minor Street is the Volume of High Volume Approach.

ALL WAY STOP CONTROL - ASPEN AVE AND W PLUM ST

Start Time	Hourly Volume(Major street- Aspen Avenue)	Hourly volume(Minor street-Plum Street)
12:00:00 AM	22	3
1:00:00 AM	5	1
$2: 00: 00 \mathrm{AM}$	5	3
3:00:00 AM	7	0
$4: 00: 00 \mathrm{AM}$	19	2
$5: 00: 00 \mathrm{AM}$	38	8
$6: 00: 00 \mathrm{AM}$	134	33
$7: 00: 00 \mathrm{AM}$	300	57
8:00:00 AM	399	101
$9: 00: 00 \mathrm{AM}$	499	150
10:00:00 AM	531	173
11:00:00 AM	666	196
12:00:00 PM	735	224
1:00:00 PM	586	173
$2: 00: 00 \mathrm{PM}$	562	127
$3: 00: 00 \mathrm{PM}$	517	144
$4: 00: 00 \mathrm{PM}$	591	144
$5: 00: 00 \mathrm{PM}$	645	148
$6: 00: 00 \mathrm{PM}$	545	111
$7: 00: 00 \mathrm{PM}$	332	76
$8: 00: 00 \mathrm{PM}$	292	56
$9: 00: 00 \mathrm{PM}$	191	55
$10: 00: 00 \mathrm{PM}$	72	33
$11: 00: 00 \mathrm{PM}$	35	6

Based on the minimum volume criteria suggested in the MUTCD, this intersection fails to meet the minimum (>300) on the major approach and the minor approach (>200). Not meeting both minimums, it is not advisable to implement a 4-way stop based on vehicle volumes.

ALL WAY STOP CONTROL - PABOR AVE AND MESA ST

	Hourly volume(Minor street-Pabor Avenue)	Hourly Volume(Major street-Mesa Street)
12:00:00 AM	3	8
1:00:00 AM	2	1
2:00:00 AM	4	6
3:00:00 AM	2	6
4:00:00 AM	1	2
5:00:00 AM	20	11
$6: 00: 00 \mathrm{AM}$	48	28
$7: 00: 00 \mathrm{AM}$	110	79
$8: 00: 00 \mathrm{AM}$	112	168
$9: 00: 00 \mathrm{AM}$	120	182
10:00:00 AM	119	217
$11: 00: 00 \mathrm{AM}$	126	256
$12: 00: 00 \mathrm{PM}$	164	298
$1: 00: 00 \mathrm{PM}$	133	325
$2: 00: 00 \mathrm{PM}$	131	269
3:00:00 PM	135	239
$4: 00: 00 \mathrm{PM}$	163	261
$5: 00: 00 \mathrm{PM}$	185	279
$6: 00: 00 \mathrm{PM}$	124	316
$7: 00: 00 \mathrm{PM}$	82	257
$8: 00: 00 \mathrm{PM}$	57	148
$9: 00: 00 \mathrm{PM}$	37	141
$10: 00: 00 \mathrm{PM}$	13	37
$11: 00: 00 \mathrm{PM}$	14	

Based on the minimum volume criteria suggested in the MUTCD, this intersection fails to meet the minimum (>300) on the major approach and the minor approach (>200). Not meeting both minimums, it is not advisable to implement a 4-way stop based on vehicle volumes.

Appendix D: Fremont Street
 Conceptual Designs

Appendix E: Fremont Street Cost

 Estimates
JUB OPINION OF PROBABLE CONSTRUCTION COST
 FRUITA
 COLORADO

PROJECT: City of Fruita Active Circulation Plan	Common Categories
CLIENT: City of Fruita	J-U-B PROJ. NO.: $07-21-010$

Bike Sharrow (1 mile)

Item No.	Item	Description	Unit	Unit Cost		Quantity		Total
1	sharrow	Bicycle with chevrons	Ea	\$	90.00	13	\$	1,755
2	share the road sign	Share the lane sign	Ea	\$	300.00	2	\$	600
	sub-total						\$	2,355
		Mobilization contingency	LS		2,000.00	1	\$	2,000
	Total						\$	4,355

Bike Lane Sharrow (1 mile)

Item No.	Item	Description	Unit	Unit Cost		Quantity		Total
1	sharrow	Bicycle with chevrons	Ea	\$	90.00	13	\$	1,755
2	share the road sign	Share the lane sign	Ea	\$	300.00	2	\$	600
3	Striping (single)	single delineator stripe	Ea	\$	0.40	5,280	\$	2,112
	sub-total						\$	4,467
		Mobilization contingency	LS	\$	2,000.00	1	\$	2,000
	Total						\$	6,467

Bike Lane Buffered (1 mile)

Item No.	Item	Description	Unit	Unit Cost		Quantity		Total
1	Concrete Curb	Vertical curb seperator. Two back to back vertical concrete curbs (catch/spill)	LF	\$	37	10,560	\$	390,720
2	Asphalt patching	Two foot longitudinal patch adjacent to new curb. 4" depth.	SY	\$	48	2,347	\$	123,904
	sub-total						\$	514,624
		Contingency (15\%)					\$	77,193.60
	Total						\$	591,818

Median (1 Item No.	mile) Item	Description	Unit	Unit Cost		Quantity	Total	
1	Median (rock mulch)	Vertical curbing with 4 foot width median	LF	\$	37	10,568	\$	391,016
2		Hardscape median fill (4" thick rock multch)	SY	\$	6	2,350	\$	14,100
3	Asphalt patching	Two foot longitudinal patch adjacent to new curb. 4" depth.	SY	\$	65	2,348	\$	167,914
	sub-total						\$	573,030
		Contingency (15\%)					\$	85,954
	Total						\$	658,984
1		Vertical curbing with 4 foot width median	LF	\$	74	5,288	\$	391,312
2	Median (concrete)	Concrete median fill (4" thick)	SY	\$	65	2,350	\$	152,750
3	Asphalt patching	Two foot longitudinal patch adjacent to new curb. 4" depth.	SY	\$	65	1,175	\$	84,020
	sub-total						\$	628,082
		Contingency (15\%)					\$	94,212
	Total						\$	722,295

J-U-B PROJ. NO.: 07-21-010						Date: 10-1-2021
ITEM NO.	SECTION NUMBER	CONTRACT ITEM	UNIT	UNIT COST RANGE	Quantity	Cost Range
1		Standard Intersection (Complete 2-3 Lane Facility) (To Include Engineering, Removals, Installation, and Contingency)	EACH	\$283,000	1	\$283,000
TOTAL:						\$283,000

CLIENT: City of Fruita J-U-B PROJ. NO.: 07-21-010						Date: 10-1-2021
ITEM NO.	SECTION NUMBER	CONTRACT ITEM	UNIT	UNIT COST RANGE	Quantity	Cost Range
1		Roundabout Intersection (Complete 2-3 Lane Facility) (To Include Engineering, Removals, Installation, and Contingency)	EACH	\$800,000-\$1,200,000	1	\$800,000-\$1,200,000
TOTAL:						\$800,000-\$1,200,000

Appendix F: Prioritization Matrix

Bicycle Project Prioritization

Multimodal and Street Enhancement Project Prioritization

Appendix G: Cost Estimates

MEMORANDUM

Date:	October 1, 2021
To:	Charles Alexander
From:	Bret Guillory, PE
	Matt Filla, EIT
	Subject:
	Fruita Active Circulation Plan - Cost Estimates

This memo is intended to accompany cost estimates for the Fruita Active Circulation Plan and to help inform all parties of the basis of certain items' unit costs. This memo will provide cost information sources and methodology as to how unit costs were developed.

Fremont Street Improvements

Cost estimates for the proposed Fremont Street Improvements were developed using publicly available bid summaries from the City of Grand Junction. These bid summaries, ranging from 2017 to 2021, include items similar to those proposed that were then averaged and adjusted for inflation. Costs for dissimilar proposed items were interpolated and adjusted from the most similar available costs. A 15\% design factor and 20% contingency were used. Right-of-way and easement acquisition costs were based on current property values, with the easements estimated at 75% of fee simple values.

Signalized Intersection and Roundabout Intersection

Cost estimates for the signalized and roundabout intersections were developed using recent (2021) J-U-B cost estimates for similar projects in Pleasant Grove City, Utah and Post Falls and Coeur d'Alene, Idaho. The signalized intersection cost was developed by including costs for engineering, signal components, and construction. The roundabout intersection cost includes engineering, removals, and construction. The extent of removals may vary greatly depending upon location.

Corridors

The standard corridors (roadway cross sections) were developed from the costs of the individual corridor components, which were derived from the publicly available City of Grand Junction bid summaries. Costs are based on lineal footage and include 15\% design and 15% contingency.

Pedestrian Crossing

The I-70/UPRR pedestrian crossing was derived from the City of Grand Junction's Riverside Parkway pedestrian crossing and estimates from several bridge engineering/manufacturing firms.

Signalized \& Roundabout Intersections

Item	Unit	Unit Cost	Basis
Signalized Intersection	EACH	\$283,000 (Approx. Average)	- Pleasant Grove City (Utah) Engineering OPCCs (2021) - Signal component - Includes signal hardware (structural support, mast arms, power, conduit, junction box, signs/signals, lighting, controller, detection, etc.) - \$143,000 to \$185,000 - Average: $\$ 165,000$ Engineering/design component - \$30,000 to \$50,000 - Average: $\$ 40,000$ - Construction component - Includes mobilization, traffic control, removals, boring/trenching, and surfacing - $\$ 40,000$ to $\$ 54,000$ - Average: $\$ 46,000$ - Assumptions: 2-3 lane intersection, 15\% contingency
Roundabout Intersection	EACH	$\begin{aligned} & \$ 800,000- \\ & \$ 1,200,000 \end{aligned}$	- Salt Lake City (Utah) Engineering OPCCs (2021) - Construction component - \$525,000 to \$1,200,000 - Engineering/design component - \$110,000 to \$775,000 - Post Falls and Coeur d'Alene (Idaho) Engineering OPCCs (2021) - Construction component - \$845,000 to \$1,015,000 Engineering/design component - \$100,000 to \$193,000

Corridor Components

Item	Unit	Unit Cost	Basis
Curb Ramp (To Include 6" of Class 6 Aggregate Base Course and 2'x4' Detectable Warning)	EACH	\$800	- City of Grand Junction Bid Summaries (2017-2020) - Curb Ramp (Including 6" of Class 6 Aggregate Base Course) - Detectable Warning ($2^{\prime} \times 4^{\prime}$) - Adjusted for 5\% inflation
Curb and Gutter Type 2 (Section IIB) (To Include 6" of Class 6 Aggregate Base Course)	LF	\$37	- City of Grand Junction Bid Summaries (2017-2020) - Concrete Curb and Gutter (2' Wide)(Including 6" of Class 6 Aggregate Base Course) - Adjusted for 5% inflation
Curb, Gutter and Sidewalk Type 2 (Section IIB) (To Include 6" of Class 6 Aggregate Base Course)	LF	\$77	- City of Grand Junction Bid Summaries (2017-2020) - Curb, Gutter, and Sidewalk Type 2 (Section IIB) - Concrete Curb and Gutter (2' Wide) - Concrete Sidewalk ($6^{\prime \prime}$ Thick)(To Include $6^{\prime \prime}$ of Class 6 Aggregate Base Course) - Assumptions: 5.5' sidewalk width - Adjusted for 5% inflation
Detached Walk Path (To Include 6" of Class 6 Aggregate Base Course)	LF	\$55	- City of Grand Junction Bid Summaries (2017-2020) - Concrete Sidewalk (Various Thicknesses)(To Include 6" of Class 6 Aggregate Base Course) - Concrete Sidewalk (4" Thick) - Assumptions: $4^{\prime \prime}$ thickness, 6 ' Width - Adjusted for 5\% inflation
Asphalt Paving (Two 2" Mats)(To Include 24" of Class 6 Aggregate Base Course)	SY	\$65	- City of Grand Junction Bid Summaries (2017-2020) - Hot Mix Asphalt (Various Thicknesses)(Grading SX, Various Binder Grades) - Class 6 Aggregate Base Course (Various Thicknesses) - City of Gunnison (2020) - HMA - Adjusted for 5% inflation
Aggregate Base Course	TON	\$35	- City of Grand Junction Bid Summaries (2017-2020) - Class 6 Aggregate Base Course (Various Thicknesses) - Adjusted for 5\% inflation

Corridor Components (Continued)

Item	Unit	Unit Cost	Basis
Lane Striping	LF	\$1	- City of Grand Junction Bid Summaries (2017-2020) - Pavement Marking Paint (Water Based)(Single White Line) - RS Means Data - Painted Pavement Markings (Acrylic Waterborne)(White or Yellow)(4" Wide) - Pleasant Grove City (Utah) Engineering OPCCs (2021) - Pavement Marking (Various, including White or Yellow, Double, and 8" Wide)
Bike Lane Sharrow	Mile	\$4,355	- Phone conversation with striping contractor (2021) - Assumes sharrow every 400 feet ($13 / \mathrm{mile}$) - Assumes "Share the Road" signs at $2 /$ mile. - Mobilization is also assumed as $\$ 2,000$.
Bike Lane Sharrow with Lane Stripe	Mile	\$6,467	- Phone conversation with striping contractor (2021) - Assumes sharrow every 400 feet ($13 /$ mile) - Assumes "Share the Road" signs at $2 /$ mile. - Includes one lane delineator stripe. - Mobilization is also assumed as $\$ 2,000$.
Bike Lane Buffered	Mile	\$591,818	- City of Grand Junction Bid Summaries (2017-2020)
Median with rock mulch hardscape	Mile	\$658,984	- City of Grand Junction Bid Summaries (2017-2020)
Median with concrete hardscape	Mile	\$722,295	- City of Grand Junction Bid Summaries (2017-2020)

Corridors

Item	Unit	Unit Cost	Total Cost (Including Design/Contingency)	Basis
Major Arterial Corridor	LF	\$595	\$774	- Corridor unit costs derived from applicable corridor components - Proposed new construction (removals not included) - Assumptions: 15% design and 15% contingency added
Major Arterial (Enhanced Travel) Corridor	LF	\$645	\$839	
Major Collector (25- 30 MPH)	LF	\$475	\$618	
Greenway Drive Collector (Industrial)	LF	\$470	\$611	
Minor Collector (Industrial)	LF	\$340	\$442	
Minor Collector (Residential \& Commercial)	LF	\$470	\$611	
Residential	LF	\$340	\$442	

Pedestrian Crossing

Item	Unit	Unit Cost	
I-70/UPRR Grade Separated Pedestrian Crossing	LS	$\$ 4,800,000$	- City of Grand Junction o Riverside Parkway/UPRR Grade Separated Pedestrian Crossing (2007) - Excel Bridge Manufacturing Co. o Pre-fabricated bridge
- Roseke Engineering			
o Steel girder pedestrian bridge			
- Assumptions: 15\% design and 15\% contingency added			

Multimodal and Street Enhancements Cost Summary

	Construction Cost Summary			$\begin{aligned} & \hline \text { Mobilization/Traffic Control } \\ & (25 \%) \\ & \hline \end{aligned}$		Construction Subtotal	
Relocate Utility Pole	\$5,000.00	-	\$50,000.00	\$1,250.00	\$12,500.00	\$7,000.00	\$70,000.00
Median Refuge Island	\$5,000.00			\$1,250.00		\$7,000.00	
RRFB	\$50,000.00			\$12,500.00		\$70,000.00	
Convert from Side Street Stop to All-Way Stop	\$1,100.00			\$275.00		\$2,000.00	
Stop	\$450.00			\$112.50		\$600.00	
Pedestrian Signal	\$4,500.00			\$1,125.00		\$6,000.00	
Tighten Curb Radii	\$5,000.00			\$1,250.00		\$7,000.00	
Shift Crosswalk Location	\$10,000 + \$50/LF of crosswalk			\$2,500.00		\$13,000 + \$50/LF of crosswalk	
Lighting at an Intersection	\$1,000.00	-	\$4,000.00	\$250.00		\$1,250.00	\$4,000.00

- Assuming roughly 8×20
- Assume two RRFBs plus conduit, controller, etc
- Assumes 2 new stop bars and sign posts
- Assuming stop sign and post
- Assuming traffic signal pole with two pedestrian heads and two ped push buttons
- Not assuming new curb ramps or relocation of drainage
- Assuming 12' wide crosswalk and needing two new curb ramps
- Assuming anywhere from 1-4 lights

Mobilization 25\%
Median Refuge Island

	Unit	Qty	Cost	Total Cost	
Install Curb and Gutter	LF	56		25	1400
Install concrete sidewalk	SF	160		15	2400
Truncated Domes	EA	2		500	1000
					4800

Convert from Side Street Stop to All-Way Stop

	Unit	Qty	Cost	Total Cost	
Install sign \& post	EA	2	450	900	
Stop Bar	SF	24	5	120	
				1020	

Pedestrian Signal

	Unit	Qty	Cost	Total Cost	
2 ped push buttons	EA	2		400	800
2 ped heads	EA			700	1400
1 traffic signal pole	EA	1		2300	2300
					4500

Tighten Curb Radii

	Unit	Qty	Cost	Total Cost	
Remove Curb \& Gutter	LF	40		9	360
Remove concrete sidewalk	SF	50		15	750
Install Curb and Gutter	LF	45		25	1125
Install concrete sidewalk	SF	100		15	1500

Shift Crosswalk Location

	Unit	Qty	Cost	Total Cost		
Curb Ramps	EA	2		5000	\$	10,000.00
Grind out exisitng						
crosswalk	SF	240		3	\$	720.00
Add new Crosswalk Bars	SF	240		5	\$	1,200.00
					\$	1,920.00
Per LF cost (12' wide						
crosswalk)					\$	48.00

Assume 40 ft for calculation and 12' wide and using thermoplastic paint

Appendix H: April 26, 2021 Recommendations Presentation

Fruita Active Circulation Plan

April 26-27, 2021 Site Visit \& Recommendations

Positive Practices

- 20 MPH "when flashing" school zone signs
- New crosswalks with W11-2 warning signs, pedestrian refuge islands
- Bicycle/pedestrian cut throughs in new development
- Recent investments in trail infrastructure
- Aspen Avenue streetscape

Positive Practices

General Recommendations

- Implement branded wayfinding for trails and bikeways system
- 44' cross section: 7' parking, 5' bike lanes, 10' travel lanes (versus 11' combined parking/bike lane and 11^{\prime} travel lanes)
- Maple Street
- Mesa Street
- Move away from combined parking/bike lanes
- Consistency in marked crosswalks at uncontrolled locations:
- Warning signs (W11-2 or S1-1) to accompany high-visibility markings
- Pedestrian refuge islands generally preferred over bulbouts
- RRFBs where operating speeds $\geq 40 \mathrm{mph}$ or ADT $\geq 15,000 \mathrm{vpd}$
- Intersection control evaluation: evaluate new locations for all-way STOPs, signals, and roundabouts (including mini-roundabouts)
- Network development to follow

Circle Park

- Long-term
- Pursue Downtown Streetscape Improvements
- Evaluate converting to STOP on entry
- Short-term: reinforce existing striping patterns with flexible delineators

Aspen Avenue

- Support CDOT plans for I-70 access improvements to east Fruita
- Long-term
- Pursue Downtown Streetscape Improvements
- Establish parallel streets as alternatives
- Short-term:
- Complete all-way STOP warrant study at Aspen Avenue \& Mulberry Street
- Mark crosswalks in addition to colored pavement
- Designate as a bike route with sharrows

Aspen Avenue \& Plum Street

- Evaluate intersection for all-way STOP or traffic signal
- Evaluate removing rightturn lanes (EBRT approaching Plum Street, SBRT approaching City Market driveway) and adding continuous twoway left-turn lanes

Aspen Avenue \& Cherry Street

- Long-term
- Reconfigure right-turn lanes as 30-60-90 degree, or
- Add speed tables to rightturn lanes
- Short-term:
- Add second yield sign to NB approach
- Add flexible delineators to reinforce existing striping pattern

Pabor Avenue \& Mesa Street

- Complete all-way STOP warrant study
- Consider mini-roundabout as an alternative to existing control or all-way STOP
- If retaining existing control, split up or reduce crossing distance with pedestrian refuge islands or medians

Little Salt Wash Trail Connectivity

Ottley Avenue

- Establish continuous bike lane
- Prohibit parking to establish buffered bike lane (35 mph)
- If on-street parking must remain, use 10 ' travel lanes and 7' parking lanes to maximize bike lane width

Ottley Avenue \& Coulson Street

- On southwest corner:
- Remove tree (if within ROW)
- Relocate utility poll
- Shift centerline north to increase sight line
- Narrow crossing across east leg; stripe bike lanes through intersection

SH-340 at I-70 and Raptor Road

- Long-term: pursue crossings separated from vehicle traffic
- Little Salt Wash (existing)
- Parallel to SH-340
- Near Fruita Monument High School
- Short-term:
- Raise fence/barrier on I-70 overpass and railroad overpass
- Enhance existing marked crosswalks at I-70 Frontage Road and SH-340 with Rectangular Rapid Flashing Beacons

Connectivity across I-70 \& Railroad

Colorado Riverfront Trail Connectivity

SH-340

- Establish 10’ preferred ($8^{\prime} \mathrm{min}$) trail on both sides from roundabouts to south City limits
- Restripe existing FC-FC to provide buffered bike lanes

SH 340

US-6

- Restripe to provide wider shoulder on north side to improve sight lines
- Signal warrant studies as necessary (e.g. Maple Street)

8/9 School and High School

- Add median to pedestrian crossing (and midblock) between Fruita Monument High School and LDS Seminary
- Evaluate single-lane mini roundabouts: J 3/10 Road and Wildcat Boulevard (100^{\prime} diameter), Pine Avenue \& Aspen Street (80^{\prime} diameter)

Crosswalks at Intersections

- Shift crosswalk to be in front of the STOP bar: Pine Street and Wildcat Boulevard, J 3/10 Road and Wildcat Boulevard (if roundabout is not pursued)

Pine Street and US-6

- Relocate utility box to improve visibility for right-turning vehicles
- Reduce radius of northeast corner to slow speeds of westbound rightturning vehicles

Sidewalk Gaps and Widening

- Current practices?
- Potential approach?

Appendix I: Maps in 11×17

Future Street Classification

- Minor Arterial
- Minor CollectorCity Boundary
- Major Arterial
_Major Collector
i---- Urban Growth Boundary

[^1]

Sidewalk Gap Completion Phase
——Phase 1Phase 3
Phase 4

- Phase 5
-_Phase 6

Future Bike Network

Bike Lane
_I Buffered Bike Lane \qquad Wide Shoulder
Sharrow \qquad

Legend

City of Fruita Boundry

- Grand Valley Transit Bus Stops
Parks Grand Valley Transit Route 8

Fruita Active Circulation Plan
Existing Transit Network

Proposed Multimodal Intersection and Street Enhancements

Figure 13: Multimodal intersection and street investments

Sidewalk Gap Completion Phase

| _ Short | Long \quad Bending Development |
| :--- | :--- | :--- |
| Medium | Beyond |

Future Bike Network

	Existing	Bike Lane
$=-=-=1$	Proposed	Sharrow
	Buffered Bike Lane	

PhaseCity Boundary
:--- Urban Growth Boundary

Proposed Multimodal and
Intersection Street Enhancements

- Intersection
——— Roadway
Phase

Figure 17: Phased multimodal and intersection projects

[^0]: Source: Fehr \& Peers.

[^1]: Figure 9: Street functional classification

