ADELE'S ACRES SUBDIVISION

TRAFFIC IMPACT STUDY

Project Location:	1024 19 Rd Fruita, CO
Access Locations:	J 2/10 Road
Prepared By:	APEX Consulting Engineers, LLC 1000 N 9
	Grand Junction, CO 81501
APEX Job No:	$22-35$
Report Date:	December 14, 2022

Adele's Acres, Fruita, CO Traffic Impact Study

Contents

1. Introduction 1
2. Project Location and Description 1
3. Trip Generation 3
4. Trip Distribution \& Assignment 3
4.1 Determination of Trip Distribution 3
4.2 Assignment of Project Traffic 5
5. Existing \& Future Traffic Volumes 5
6. Study Years Traffic Volumes 6
7. Study Period Volumes 7
8. Auxiliary Turn Lane Evaluation 12
8.1 Mesa County Design Standards (MCDS) 12
8.2 Transportation Engineering Design Standards (TEDS) 12
9. Level of Service \& Capacity 13
10. Intersection Sight Distance 14
11. Summary and Recommendations 18

Appendix

A. Trip Generation
B. Traffic Count Summaries
C. LOS Calculations

1. Introduction

APEX Consulting Engineers, LLC prepared this Traffic Assessment (Assessment) for the Adele's Acres Development (Project), located east of 19 Road and south of J 2/10 Road at 102419 Road, Fruita, CO. Current traffic within the Project area accesses the local road network along 19 Road. The parcel to be subdivided and included in this assessment are as follows:

- Parcel \#2697-153-00-181

The Project will subdivide the approximate 15 acre parcel into 48 single family residential lots which will access the roadway network on the proposed access along J 2/10 Road. The Project is currently zoned Agricultural, Forestry, Transitional (AFT) and is surrounded by additional AFT zoning. The Project has been annexed by the City of Fruita and is planned to rezone to Residential (4-8 DU/Acre) which is consistent with the City of Fruita's future land use.

APEX did not find any evidence of any former traffic studies for the Project.

This Traffic Assessment is prepared in accordance with the 2020 Mesa County Design Standards.

2. Project Location and Description

As shown in Figure 1, the Project is located east of 19 Road and south of J 2/10 Road at 102419 Road, Fruita, CO. The Project site currently contains one single family home, and the proposed land use will include 48 single family residential lots. The Project is expected to be completed in 2025.

Figure 1 - Site Location Map

Adele's Acres, Fruita, CO
Page
Traffic Impact Study

The existing Project extents, site access location, and adjacent private driveways are shown in Figure 2.

Figure 2 - Project Site Access Locations and Adjacent Access Points

Roadway classification, speed limits, travel lanes, and approval authority are listed below.

- J 2/10 Road (East) - Rural Local, $35 \mathrm{mph}, 2$-lane, Mesa County \& City of Fruita
- J 2/10 Road (West) - Minor Collector, 35 mph, 2-lane, Mesa County
- 19 Road (North) - Enhanced Travel Corridor, $45 \mathrm{mph}, 2$-lane, Mesa County
- 19 Road (South) - Enhanced Travel Corridor, 45 mph, 2-lane, City of Fruita

J 2/10 Road is expected to be a Minor Collector with the completion of the Project as the roadway will improve from gravel to asphalt for the length of the subdivision.

3. Trip Generation

Land Use Code 210, Single Family Residential, from the ITE Trip Generation Manual 10th Edition, was used in trip generation calculations with an independent variable of Dwelling Units. In all peak hour cases, the higher of "either peak hour of roadway" or "peak hour of generator" is used, providing a conservative assessment. In this case, peak hour of generator is used. Trip generation traffic calculations from the ITETripGen Web-based App are attached in Appendix A. Table 1 provides the Project peak hour traffic in vehicles per hour (VPH) and average daily trips (ADT).

Table 1 -Project Peak Hour Traffic Volumes (VPH)

	Period	AM	PM	ADT
LUC 210 - Proposed (48 Dwelling Units)	Ins	10	34	264
	Outs	31	19	265
	TOTAL	41	53	529

4. Trip Distribution \& Assignment

4.1 Determination of Trip Distribution

All traffic is assumed to be passenger vehicles due to the rural nature of the area and additional modes of transport are not evaluated. Pedestrian traffic is not evaluated since pedestrian pathways are not planned for the Project area and neighboring areas do not include any.

The Project site only contains a single home. Project trip distribution is assigned using the distributions from turning movement counts at the intersections of $\mathrm{J} 2 / 10$ Road \& 19 Road and J 2/10 Road \& Park Street.

The TIS assumes all project traffic at the Project access will travel west towards 19 Road. From that point, the overall site distribution will be determined from turning movement count data at the intersection of J 2/10 Road \& 19 Road for the to/from north and south and J 2/10 Road \& Park Street for the east and west. However, since all traffic will head west to J $2 / 10$ Road \& 19 Road, both the southbound and eastbound traffic will use the south leg of the intersection. The naming convention for each intersection related to the distribution is listed below.

- Intersection A : J 2/10 Rd \& 19 Rd
- Intersection B : J 2/10 Rd \& Park Street

The overall site distribution and its components from the given intersections listed above will be determined as described in the following bulleted list.

- Intersection Distribution
- To/From the North (N\%) is determined from
- Eastbound to Northbound (Int A)
- Southbound to Westbound (Int A)
- To/From the South (S\%) is determined from
- Eastbound to Southbound (Int A)
- Northbound to Westbound (Int A)
- To/From the East (E\%) is determined from
- Southbound to Eastbound (Int B)
- Westbound to Northbound (Int B)
- To/From the West (W\%) is determined from
- Southbound to Westbound (Int B)
- Eastbound to Northbound (Int B)

The detailed Project trip distribution is shown in Figure 3.

Figure 3 - Project Trip Distribution

4.2 Assignment of Project Traffic

Project traffic determined from the trip generation calculation is assigned to the existing traffic network using the distributions from Figure 3.

The trip assignment is determined by applying the trip distributions presented in Figure 3 to the peak hour traffic volumes in Table 1. The resulting Project trip assignment is shown in Figure 4.

Figure 4 - Project Peak Hour Trip Assignment (VPH)

5. Existing \& Future Traffic Volumes

Peak hour volumes were developed using counts conducted on December 7, 2022 at the study intersection. A peak seasonal adjustment is not used as the roadways do not provide direct access to seasonal activities.

The existing peak hour traffic is represented in Figure 5. Count summaries are included in Appendix B.

Figure 5 - Existing Peak Hour Traffic
(From Counts on December 7, 2022)

6. Study Years Traffic Volumes

The Project would start construction in 2023 and is expected to be completed by 2025. The Assessment periods will be:

- Assessment Period 1-2025
- Assessment Period 2-2045

The Grand Valley Metropolitan Planning Organization (GVMPO) provided traffic volumes from the Regional Travel Demand Model (RTDM), base 2019 model + future 2045, and is the basis for the following road segment growth factors:

Table 2 - RTDM Road Segment Growth Factors

| Road | Segment | | $\mathbf{2 0 1 9}$ | $\mathbf{2 0 4 5}$ | $\begin{array}{c}\text { Period } \\ \text { Growth } \\ \text { Factor }\end{array}$ | $\begin{array}{c}\text { Avg. } \\ \text { Annual } \\ \text { Growth } \\ \text { Rate }\end{array}$ | $\begin{array}{c}\text { 3 - year } \\ \text { growth factor } \\ (2022-2025)\end{array}$ |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}23 - year

growth factor

(2022-2045)\end{array}\right]\)

These growth factors show a negative growth rate to 19 Road which accounts for the completion of the Fremont Street project. In order to provide a conservative estimate, an annual growth rate of 1.9% will be applied to 19 Road which was provided by Mesa County as the current growth without the completion of the Fremont Street project. The following table shows the growth rates used in the study as directed by Mesa County.

Table 3 - Mesa County Road Segment Growth Factors

Road	Segment	Avg. Annual Growth Rate	3 - year growth factor $(\mathbf{2 0 2 2 - 2 0 2 5)}$	$\mathbf{2 3}$ - year growth factor $(2022-2045)$
19 Rd	Through Volumes, Both Sides	1.90	1.058	1.542

7. Study Period Volumes

Figures 6 and 8 demonstrate the future background traffic volumes by adjusting the traffic in Figure 5 with the growth factors from Table 2. Figures 7 and 9 show total peak hour traffic which consist of future background traffic with Project traffic.

Figure 6 and 8 show the predicted traffic volumes for year 2025.

Figure 6 - Background Peak Hour Future Traffic (Year 2025)

Adele's Acres, Fruita, CO
Traffic Impact Study

Total peak hour future traffic includes future background traffic plus traffic shown in Figure 4 Project Peak Hour Trip Assignment (VPH).

Figure 7 -Total Peak Hour Future Traffic (Year 2025)

APEX

Figure 8 and 9 show the predicted traffic volumes for year 2045. Figure 8 includes the existing traffic with growth rates found in Table 2 applied similarly to the 2025 condition.

Figure 8 - Background Peak Hour Future Traffic (Year 2045)

Adele's Acres, Fruita, CO
Traffic Impact Study

Figure 9 is calculated in a similar manner to Figure 7 -Total Peak Hour Future Traffic (Year 2025). The 2045 condition uses the 23 year growth rates to account for growth which is applied to the existing traffic counts. Figure 9 represents the adjusted traffic counts shown in Figure 8 with the addition of traffic shown in Figure 4 - Project Peak Hour Trip Assignment (VPH).

Figure 9 - Total Peak Hour Future Traffic (Year 2045)

8. Auxiliary Turn Lane Evaluation

The need for auxiliary lanes was evaluated based on the turn lane warrants listed in the 2020 Mesa County Design Standards and the Transportation Engineering Design Standards (TEDS).

8.1 Mesa County Design Standards (MCDS)

The following table shows the data and criteria necessary to identify the need for exclusive rightturn and left-turn deceleration lanes at the intersections in the Assessment area based on the MCDS.

Table 4 - Auxiliary Lane Requirements per MCDS

	Intersection	Year	Deceleration Movement	Speed Limit	Highest Period	Turning (vph)	DHV of Roadway	Threshold Turning Volumes	Threshold DHV Volumes	Ingress ADT	Auxilary Lane Req'd
2	$\begin{aligned} & \text { J 2/10 Road \& } \\ & 19 \text { Road } \end{aligned}$	2025 Total	NB Right	45	PM	24	362	20	200	35	YES
			NB Left		PM	45	362	15	200	53	YES
			SB Right		AM	3	394	20^{1}	$200{ }^{1}$	53	NO ${ }^{1}$
			SB Left		PM	4	362	15^{2}	$200{ }^{2}$	35	NO^{2}
		2045 Total	NB Right	45	PM	24	527	20	200	35	YES
			NB Left		PM	45	527	15	200	53	YES
			SB Right		AM	3	575	20^{1}	$200{ }^{1}$	53	NO ${ }^{1}$
			SB Left		PM	4	527	15^{2}	200^{2}	35	NO^{2}

Notes:

1. Right turn lanes generally not required with through volumes less than 200 vph and left turns less than 20 vph .
2. Left turn lanes generally not required with through volumes less than 200 vph and right turns less than 15 vph .

Based on the MCDS, both the northbound right and left deceleration lanes are warranted. However, the northbound to westbound left turn lane is warranted regardless of the Project.

8.2 Transportation Engineering Design Standards (TEDS)

The following table shows the data and criteria necessary to identify the need for exclusive rightturn and left-turn deceleration lanes at the intersections in the Assessment area based on the TEDS manual.

Table 5 - Auxiliary Lane Requirements per TEDS

	Intersection	Year	Deceleration Movement	Speed Limit	Highest Period	Turning (vph)	Directional DHV of Roadway	Threshold Turning Volumes	Threshold DHV Volumes	Auxilary Lane Req'd
2	$\begin{aligned} & \text { J 2/10 Road \& } \\ & 19 \text { Road } \end{aligned}$	2025 Total	NB Right	45	PM	24	188	120^{1}	300^{1}	NO^{1}
			NB Left		PM	45	188	17	188	YES
			SB Right		AM	3	299	120^{1}	$300{ }^{1}$	NO ${ }^{1}$
			SB Left		PM	4	174	19	174	NO
		2045 Total	NB Right	45	PM	24	274	120^{1}	200^{1}	NO^{1}
			NB Left		PM	45	274	13	274	YES
			SB Right		AM	3	436	45	436	NO
			SB Left		PM	4	253	14	253	NO

Notes:

1. Right turn lanes generally not required with through volumes less than 300 vph and right turns less than 120 vph .

Based on the TEDS manual, only a northbound to westbound left turn deceleration lane is warranted. Note that this turn lane is warranted regardless of the Project and the Project does not add traffic to that movement.

9. Level of Service \& Capacity

The Study includes level of service analysis to evaluate the quality of J 2/10 Road \& 19 Road without the addition of auxiliary lanes. The traffic analysis was conducted using the methodologies outlined in the Transportation Research Board’s Highway Capacity Manual, 2020 Edition. Synchro ${ }^{\circledR} 10$ Planning \& Analysis Software was used to determine traffic operation.

The results of the intersection operational analysis were used to assess the LOS experienced by drivers as the duration of delay a driver experiences at a given intersection. LOS A represents the most desirable conditions with free-flow movement of traffic and minimal delay to motorists. LOS F generally indicates severely congested conditions with excessive delays to motorists. Intermediate grades of B, C, D, and E reflect incremental increases in congestion.

The duration of delay is measured differently for signalized intersections as compared to unsignalized intersections. The LOS delay range for an unsignalized intersection is typically shorter than at a signalized intersection primarily because at a stop sign, the traveling public has an expectation to experience less delay than at a signal. In addition, studies have shown that at unsignalized intersections drivers tend to become impatient with long delays and may use inadequate and unsafe gaps in the traffic stream to make left turns or enter the major street. The following table provides the delay thresholds for signalized and unsignalized intersections.

Table 6 - Intersection Delay \& LOS Thresholds

Level of Service (LOS)	Signalized Intersections (seconds/vehicle)	Unsignalized Intersection (seconds/vehicle)
A	$0.0-10.0$	$0.0-10.0$
B	$10.1-20.0$	$10.1-15.0$
C	$20.1-35.0$	$15.1-25.0$
D	$35.1-55.0$	$25.1-35.0$
E	$55.1-80.0$	$35.1-50.0$
F	Greater than 80.0	Greater than 50.0

Source: Transportation Research Board, Highway Capacity Manual, 2020 Edition

Traffic Operations Analysis Results

Peak hour LOS was computed within the Study area using Synchro's Highway Capacity Manual 2016 Methodology Module. Results are reported in Table 7 and calculations are included in Appendix C.

Table 7 - Intersection Operations Summary

Intersection			Period	Traffic Control	New Lane Geometry	2025		2045	
	E-W	N-S				Background	Total	Background	Total
	J 2/10 Rd	19 Rd	AM	Unsignalized	Intersection LOS	A (1.4)	A (2.1)	A (1.1)	A (1.8)
	Eastbound			Stop	1 left-thru-right	B	B	B	B
	Westbound			Stop	1 left-thru-right	B	B	B	C
	Northbound			Free	1 left-thru-right	A	A	A	A
	Southbound			Free	1 left-thru-right	A	A	A	A
2	Highest Control Delay LOS \& Delay (sec/veh)					B (12.3)	B (13.2)	B (14.5)	C (16.4)
2	J 2/10 Rd	19 Rd	PM	Unsignalized	Intersection LOS	A (1.6)	A (2.1)	A (1.2)	A (1.7)
	Eastbound			Stop	1 left-thru-right	B	B	B	B
	Westbound			Stop	1 left-thru-right	B	B	C	C
	Northbound			Free	1 left-thru-right	A	A	A	A
	Southbound			Free	1 left-thru-right	A	A	A	A
	Highest Control Delay LOS \& Delay (sec/veh)					B (13.0)	B (13.3)	C (15.4)	C (16.1)

Table 7 shows that the intersection will operate at acceptable conditions with the addition of Project traffic for the 2045 condition without any auxiliary lanes. The Project traffic does not significantly impact the LOS. A northbound to eastbound right turn deceleration lane is not recommended at this intersection.

The volumes of traffic at each intersection are well under the capacity at the 2045 condition. The results of the volume to capacity ratio can be found in Appendix C.

10. Intersection Sight Distance

The Project access will be located on a proposed improvement of J 2/10 Road. Required stopping sight distance for vehicles along the roadway was obtained from Exhibit 6.1 in the Mesa County Design Standards. Stopping sight distance is based on design speed which is 10 mph greater than the posted speed limit. The posted speed limit is 35 mph .

J 2/10 Road has a grade of less than three percent to the east and west of the proposed Project access. The required stopping sight distance is 360 feet which is exceeded in both directions. Refer to Images 1 and 2.

Image 1 - Looking East from 360' West of the Project Access

Image 2 - Looking West from 360' East of the Project Access

Required intersection sight distance for left turns from a stop was obtained from Exhibit 6.12 in the Mesa County Design Standards. Intersection sight distance is also based on design speed which is 45 mph for this location. The required intersection sight distance is 500 feet which is exceeded in both directions. Refer to Images 3 and 4.

Image 3 - Looking East from the Project Access

Image 4 - Looking West from the Project Access

11. Summary and Recommendations

- The proposed Project will increase the traffic volumes of the roadway network by 41 AM trips, 53 PM trips, and 529 ADT.
- A northbound to westbound deceleration lane is warranted by both County and TEDS warrant thresholds however, the Project does not contribute any traffic to this movement.
- A northbound to eastbound deceleration lane is warranted per MCDS but not per TEDS. The LOS of the intersection is adequate, and APEX is not recommending construction of an auxiliary lane for this movement.
- All sight distance requirements are met.
- The Project will have minimal impact on the surrounding roadway network.
- The Project will improve J 2/10 Road east of 18 Road.

Appendix A - Trip Generation

AM Peak Hour - LUC 210, 48 Dwelling Units

PM Peak Hour - LUC 210, 48 Dwelling Units

Adele's Acres, Fruita, CO
Page | 1
Traffic Impact Study

Appendix A - Trip Generation

ADT Weekday - LUC 210, 48 Dwelling Units

Project:
Location:
EB/WB Road:
NB/SB Road:

Adele's Acres
Fruita, CO
J 2/10 Rd.
Park St.

Counted By: \qquad

Intersection 1 - J 2/10 Rd. \& Park St.

		J 2/10 Rd. - (EB)			J 2/10 Rd. - (WB)			Park St. - (NB)			Park St. - (SB)			Sums
		Left	Through	Right										
	7:00	0	0	0	0	4	0	0	0	0	6	0	1	11
	7:15	0	2	0	0	1	3	0	0	1	8	0	4	19
	7:30	3	4	0	0	13	0	0	0	0	8	0	8	36
	7:45	3	5	2	0	4	3	1	0	0	5	1	2	26
	8:00	1	1	0	1	1	1	0	0	0	4	0	2	11
	8:15	0	1	0	0	3	1	0	0	1	6	0	3	15
	8:30	2	4	0	0	3	2	0	2	0	5	0	2	20
	8:45	4	6	0	0	3	1	0	1	0	3	2	1	21
	Peak	6	11	2	0	22	6	1	0	1	27	1	15	92
	Sums	19			28			2			43			
\sum	16:00	5	5	0	0	7	3	0	0	0	6	3	2	31
	16:15	3	6	0	0	6	2	0	0	0	1	0	3	21
	16:30	2	8	1	0	7	7	0	0	1	1	0	2	29
	16:45	1	7	0	2	5	5	0	0	0	2	0	4	26
	17:00	2	5	0	1	1	4	1	0	1	5	0	2	22
	17:15	5	5	0	0	5	11	0	0	1	0	0	2	29
	17:30	3	2	0	1	5	6	0	0	0	3	0	0	20
	17:45	2	3	0	0	3	8	0	0	0	3	0	2	21
	Peak	11	26	1	2	25	17	0	0	1	10	3	11	107
	Sums	38			44			1			24			

Project:
Location: EB/WB Road:
NB/SB Road:

Adele's Acres
Fruita, CO
J 2/10 Rd.
19 Rd.

CONSULTING ENGINEERS
CONSULTING ENGINEERS
Counted By:
Count Date: \qquad

Intersection 2-J 2/10 Rd. \& 19 Rd.

		J 2/10 Rd. - (EB)			J 2/10 Rd. - (WB)			19 Rd. - (NB)			19 Rd. - (SB)			Sums
		Left	Through	Right										
\sum	7:00	0	0	10	0	1	0	3	8	0	0	41	0	63
	7:15	0	0	11	0	0	0	4	20	0	0	68	0	103
	7:30	0	3	15	0	0	0	4	23	0	0	119	2	166
	7:45	2	1	6	0	1	0	1	39	0	0	55	1	106
	8:00	0	0	5	0	0	0	2	12	0	0	41	0	60
	8:15	1	0	12	0	1	0	2	20	0	1	34	0	71
	8:30	2	1	11	0	0	1	2	25	0	0	57	1	100
	8:45	0	1	9	0	0	0	2	18	0	2	59	0	91
	Peak	2	4	42	0	2	0	12	90	0	0	283	3	438
	Sums	48			2			102			286			
\sum	16:00	2	1	5	0	2	0	8	36	0	1	52	0	107
	16:15	2	0	6	0	0	0	15	40	0	0	48	1	112
	16:30	1	1	3	0	0	0	10	54	0	0	34	0	103
	16:45	0	1	6	1	0	0	12	48	0	0	30	0	98
	17:00	1	0	9	0	0	0	9	43	0	0	23	2	87
	17:15	0	0	3	0	0	0	13	59	0	0	30	0	105
	17:30	3	0	8	0	1	1	11	66	0	0	23	1	114
	17:45	0	0	4	0	1	0	12	37	0	0	27	0	81
	Peak	5	3	20	1	2	0	45	178	0	1	164	1	420
		28			3			223			166			

Intersection												
Int Delay, s/veh 1.	1.4											
Movement EBL	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\&			4			*	
Traffic Vol, veh/h	2	4	42	0	2	0	12	95	0	0	299	3
Future Vol, veh/h	2	4	42	0	2	0	12	95	0	0	299	3
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control Sto	top	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-		None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#-	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor 9	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	2	4	46	0	2	0	13	103	0	0	325	3

Intersection													
Int Delay, s/veh	1.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		¢			¢			${ }_{\text {¢ }}$			\dagger		
Traffic Vol, veh/h	2	4	42	0	2	0	12	139	0	0	436	3	
Future Vol, veh/h	2	4	42	0	2	0	12	139	0	0	436	3	
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control St	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-		None	-		None	-		None	
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-	
Veh in Median Storage,	e, \#-	0	-	-	0	-	-	0	-	-	0	-	
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92	
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow		4	46	0	2	0	13	151	0	0	474	3	

