

GEOTECHNICAL AND GEOLOGIC HAZARDS INVESTIGATION 1892 K ROAD GRAND JUNCTION, COLORADO PROJECT #00545-0066

VORTEX ENGINEERING 861 ROOD AVENUE GRAND JUNCTION, COLORADO 81501

JANUARY 6, 2021

Huddleston-Berry Engineering and Testing, LLC 2789 Riverside Parkway Grand Junction, Colorado 81501

SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS

A geologic hazards and geotechnical investigation was conducted for a proposed subdivision at 1892 K Road in Fruita, Colorado. The project location is shown on Figure 1 – Site Location Map. The purpose of the investigation was to evaluate the surface and subsurface conditions at the site with respect to geologic hazards, pavement design, and earthwork for the proposed development. This summary has been prepared to include the information required by civil engineers, structural engineers, and contractors involved in the project.

Subsurface Conditions (p. 2)

The subsurface investigation consisted of five test pits, excavated on November 19, 2020. The locations of the test pits are shown on Figure 2 – Site Plan. The test pits generally encountered native sand and silt soils with clay layers. Groundwater was not encountered in the subsurface at the time of the investigation. The native sand and silt soils are non-plastic and are anticipated to be slightly collapsible. The native clay soils are slightly plastic and slightly expansive.

Geologic Hazards and Constraints (p. 4)

No geologic hazards were identified which would preclude development of this property. However, moisture sensitive soils were encountered during the subsurface investigation and these materials may impact the design and construction of foundations, pavements, etc.

Summary of Foundation Recommendations (p. 5)

- *Foundation Type* Spread Footings or Monolithic (turndown) Structural Slabs. (p. 4)
- Structural Fill 24-inches below foundations. The native soils are suitable for reuse as structural fill. Imported structural fill should consist of granular material approved by HBET. (p. 4)
- Maximum Allowable Bearing Capacity 1,500 psf. (p. 5)
- Subgrade Modulus 150 pci for native soils and 250 pci for imported granular materials. (p. 5)
- *Lateral Earth Pressure* 45 pcf active. 65 pcf at-rest. (p. 6)

Summary of Pavement Recommendations (p. 6)

Internal Subdivision Roadways

EDLA = 20, Structural Number = 3.50

	PAVEMENT SECTION (Inches)									
ALTERNATIVE	Hot-Mix Asphalt Pavement	CDOT Class 6 Base Course	CDOT Class 3 Subbase Course	Rigid Pavement	TOTAL					
А	3.0	16.0			19.0					
В	4.0	13.0			17.0					
С	3.0	6.0	14.0		23.0					
Full Depth RP		6.0		6.0	12.0					

TABLE OF CONTENTS

1.0	INTRODUCTION	1
1.1	Scope	1
1.2	Site Location and Description	1
1.3	Proposed Construction	1
2.0	GEOLOGIC SETTING	2
2.1	Soils	2
2.2	Geology	2
2.3	Groundwater	2
3.0	FIELD INVESTIGATION	2
3.1	Subsurface Investigation	2
3.2	Field Reconnaissance	2
4.0	LABORATORY TESTING	3
5.0	GEOLOGIC INTERPRETATION	3
5.1	Geologic Hazards	3
5.2	Geologic Constraints	3
5.3	Water Resources	3
5.4	Mineral Resources	3
6.0	CONCLUSIONS	4
7.0	RECOMMENDATIONS	4
7.1	Foundations	4
7.2	Corrosion of Concrete	5
7.3	Lateral Earth Pressures	5
7.4	Drainage	5
7.5	Excavations	5
7.6	Pavements	6
8.0	GENERAL	7

FIGURES

Figure 1 – Site Location Map Figure 2 – Site Plan

APPENDICES

Appendix A – UDSA NRCS Soil Survey Data Appendix B – Typed Test Pit Logs Appendix C – Laboratory Testing Results

1.0 INTRODUCTION

As part of extensive development in Western Colorado, a new residential subdivision is proposed in Fruita. As part of the development process, Huddleston-Berry Engineering and Testing, LLC (HBET) was retained by Vortex Engineering to conduct a geologic hazards and geotechnical investigation at the site.

1.1 Scope

As discussed above, a geologic hazards and geotechnical investigation was conducted for a proposed subdivision at 1892 K Road in Fruita, Colorado. The scope of the investigation included the following components:

- Conducting a subsurface investigation to evaluate the subsurface conditions at the site.
- Collecting soil samples and conducting laboratory testing to determine the engineering properties of the soils at the site.
- Providing preliminary recommendations for foundation type
- Providing recommendations for lateral earth pressure.
- Providing recommendations for pavements.
- Providing recommendations for drainage, grading, and general earthwork.
- Evaluating potential geologic hazards at the site.

The investigation and report were completed by a Colorado registered professional engineer in accordance with generally accepted geotechnical and geological engineering practices. This report has been prepared for the exclusive use of Vortex Engineering and the Owner.

1.2 Site Location and Description

The site encompasses approximately 11 acres at 1892 K Road in Fruita, Colorado. The project location is shown on Figure 1 – Site Location Map.

At the time of the investigation, most of the site was open. However, an existing residence and accessory dwelling unit were present in the southern portion of the site. The site sloped slightly down to the southwest and vegetation consisted primarily of grasses, weeds, and sparse small to large bushes and trees. The site was bordered to the north, east, and west by residential/agricultural properties, and to the south by K Road.

1.3 Proposed Construction

The proposed subdivision is anticipated to include subdivision of the property into single-family residential lots. New utilities and internal subdivision roadways will also be included in the development.

2.0 GEOLOGIC SETTING

2.1 Soils

Soils data was obtained from the USDA Natural Resource Conservation Service Web Soil Survey. The data indicates that the soils at the site consist of Sagers silty clay loam, 0 to 2 percent slopes; and Turley clay loam, 0 to 2 percent slopes. Soil survey data is included in Appendix A.

Residential construction in the site soils is described as somewhat limited due to shrink-swell. Road construction in the site soils is indicated to be very limited due to frost action, low strength, and/or shrink/swell. Excavation in the site soils is indicated to be somewhat limited due to dust and/or unstable excavation walls. The site soils are indicated to have a moderate potential for frost action, moderate risk of corrosion of uncoated steel, and low to moderate risk of corrosion of concrete.

2.2 Geology

According to the *Geologic Map of the Fruita Quadrangle, Mesa County, Colorado* (2009), the site is underlain by alluvial mudflow and fan valley fill deposits.

2.3 Groundwater

Groundwater was not encountered in the subsurface at the time of the investigation.

3.0 FIELD INVESTIGATION

3.1 Subsurface Investigation

The subsurface investigation was conducted on November 19^{th} , 2020 and consisted of five test pits, excavated to depths between 6.0 and 6.5 feet below the existing ground surface. The locations of the test pits are shown on Figure 2 – Site Plan. Typed test pit logs are included in Appendix B. Samples of the subsurface soils were collected using hand drive samplers and bulk sampling methods at the locations shown on the logs.

As indicated on the logs, the subsurface conditions at the site were fairly consistent. The test pits encountered 1.0 foot of topsoil above brown, moist, loose to medium dense silty sand to sandy silt with layers of silty clay soils to the bottoms of the excavations. Groundwater was not encountered at the time of the investigation.

3.2 Field Reconnaissance

The field reconnaissance included walking the site during the subsurface investigation. In general, the site was very gently sloping. No evidence of active landslides, debris flows, rockfalls, etc. was observed.

4.0 LABORATORY TESTING

Selected soil samples collected from the test pits were tested in the Huddleston-Berry Engineering and Testing LLC geotechnical laboratory for grain-size analysis, Atterberg limits determination, natural moisture content and density determination, maximum dry density/optimum moisture (Proctor) determination, and California Bearing Ratio (CBR). The laboratory testing results are included in Appendix C.

The laboratory testing results indicate that the native sand and silt soils are nonplastic. Due to the granular nature of the soils, undisturbed samples of the soils were unable to be collected for swell/consolidation testing. However, based upon our experience with similar soils in the vicinity of the subject site, the native soils are anticipated to be slightly collapsible.

The native clay soils were indicated to be slightly plastic. In addition, the CBR results suggest that the clay soils may expand as much as 1.1% when compacted and introduced to excess moisture.

5.0 GEOLOGIC INTERPRETATION

5.1 Geologic Hazards

The primary geologic hazard identified on the site is the presence of moisture sensitive soils in the shallow subsurface.

5.2 Geologic Constraints

In general, the primary geologic constraint to construction at the site is the presence of moisture sensitive soils.

5.3 Water Resources

No water supply wells were observed on the property. In addition, shallow groundwater was not encountered at this site. In general, with proper design and construction, the proposed construction is not anticipated to adversely impact surface water or groundwater.

5.4 Mineral Resources

Potential mineral resources in Western Colorado generally include sand, gravel, uranium ore, and commercial rock products such as flagstone. As discussed previously, sands were encountered across the site. However, economic valuation of the sands with regard to their suitability as a commercial quality resource was beyond the scope of this investigation.

6.0 CONCLUSIONS

Based upon the available data sources, field investigation, and nature of the proposed construction, HBET does not believe that there are any geologic conditions which should preclude subdivision of the site. However, foundations, pavements, and earthwork will have to consider the impacts of moisture sensitive soils at the site.

7.0 **RECOMMENDATIONS**

7.1 Foundations

As discussed previously, the subsurface conditions across the site were fairly consistent. Based upon the results of the subsurface investigation and nature of the proposed construction, shallow foundations are generally recommended. Spread footings and monolithic (turndown) structural slab foundations are both appropriate alternatives and can be designed and constructed in accordance with the *Mesa County Minimum House Foundation Standards*. However, as discussed previously, the native soils range from slightly collapsible to slightly expansive. Therefore, in order to provide a uniform bearing stratum and reduce the risk of excessive differential movements, it is recommended that the foundations be constructed above a minimum of 24-inches of structural fill.

As discussed previously, the native clay soils are anticipated to be slightly expansive when compacted; however, the magnitude of expansion measured in the laboratory was small. In addition, the clay is only present in layers and represents a small portion of the overall soil mass. Therefore, the native soils, exclusive of topsoil, are suitable for reuse as structural fill. Imported structural fill should consist of a granular, non-expansive, non-free draining material approved by HBET.

For spread footing foundations, the footing areas may be trenched. However, for monolithic slab foundations, the structural fill should extend across the entire building pad area to a depth of 24-inches below the turndown edges. Structural fill should extend laterally beyond the edges of the foundation a distance equal to the thickness of structural fill.

Prior to placement of structural fill, it is recommended that the bottom of the foundation excavation be scarified to a depth of 6 to 9 inches, moisture conditioned, and compacted to a minimum of 95% of the standard Proctor maximum dry density, within \pm 2% of the optimum moisture content as determined in accordance with ASTM D698. Structural fill should be moisture conditioned, placed in maximum 8-inch loose lifts, and compacted to a minimum of 95% of the standard Proctor maximum dry density for fine grained soils and modified Proctor maximum dry density for coarse grained soils, within \pm 2% of the optimum moisture content as determined in accordance with ASTM D698 and D1557, respectively.

Structural fill should be extended to within 0.1-feet of the bottom of the foundation. No more than 0.1-feet of gravel should be placed below the footings or turndown edge as a leveling course.

For structural fill consisting of the native soils or approved imported granular materials and foundation building pad preparation as recommended, a maximum allowable bearing capacity of 1,500 psf may be used. In addition, a modulus of 150 pci may be used for native soils as structural fill and a modulus of 200 pci may be used for approved imported structural fill materials. Foundations subject to frost should be at least 24-inches below the finished grade

7.2 Corrosion of Concrete

As discussed previously, the USDA Soil Survey data suggests that the native soils have a low to moderate risk of corrosion of concrete. Therefore, at a minimum, Type I-II sulfate resistant cement is recommended for construction at this site.

7.3 Lateral Earth Pressures

Stemwalls or retaining walls should be designed to resist lateral earth pressures. For backfill consisting of the native soils or imported granular, non-free draining, non-expansive material, an active equivalent fluid unit weight of 45 pcf may be used in areas where no surcharge loads are present. An at-rest equivalent fluid unit weight of 65 pcf may be used for braced walls. Lateral earth pressures should be increased as necessary to reflect any surcharge loading behind the walls.

7.4 Drainage

Grading and drainage at the site are critical to the long-term performance of structure foundations and slabs-on-grade. Grading around the structures should be designed to carry precipitation and runoff away from the structures. It is recommended that the finished ground surface drop at least twelve inches within the first ten feet away from the structures. It is recommended that landscaping within five feet of the structures include primarily desert plants with low water requirements. In addition, it is recommended that automatic irrigation, including drip lines, within ten feet of foundations be minimized.

HBET recommends that surface downspout extensions be used which discharge 15 feet from the structures or beyond the backfill zone, whichever is greater. However, if subsurface downspout drains are utilized, they should be carefully constructed of solid-wall PVC and should daylight a minimum of 15-feet from the structures. In addition, an impermeable membrane is recommended below subsurface downspout drain lines. Dry wells should not be used.

7.5 Excavations

Excavations in the soils at the site may stand for short periods of time but should not be considered to be stable. Therefore, trenching and excavations should be sloped back, shored, or shielded for worker protection in accordance with applicable OSHA standards. The native soils at the site generally classify as Type C soil with regard to OSHA's *Construction Standards for Excavations*. For Type C soils, the maximum allowable slope in temporary cuts is 1.5H:1V.

7.6 Pavements

The proposed construction is anticipated to include internal subdivision roadways. From the subsurface investigation, the pavement subgrade materials at the site consist primarily of silt and sand soils. The design California Bearing Ratio (CBR) of the native soils was determined in the laboratory to be less than 2.0. Therefore, the recommended minimum Resilient Modulus of 3,000 psi was used for the pavement design.

Based upon the subgrade conditions and anticipated traffic loading, asphalt and concrete pavement section alternatives were developed in accordance with AASHTO design procedures. The following minimum pavement section alternatives are recommended:

	PAVEMENT SECTION (Inches)										
ALTERNATIVE	Hot-Mix Asphalt CDOT Class 6 Pavement Base Course		CDOT Class 3 Subbase Course	Rigid Pavement	TOTAL						
А	3.0	16.0			19.0						
В	4.0	13.0			17.0						
С	3.0	6.0	14.0		23.0						
Full Depth RP		6.0		6.0	12.0						

Internal Subdivision Roadways EDLA = 20 Structural Number = 3 50

Prior to roadway construction, the roadway prism should be stripped of all topsoil, fill, or other unsuitable materials. It is recommended that the subgrade soils be scarified to a depth of 12-inches; moisture conditioned, and recompacted to a minimum of 95% of the standard Proctor maximum dry density, within $\pm 2\%$ of optimum moisture as determined by AASHTO T-99.

Aggregate base course and subbase course should be placed in maximum 9-inch loose lifts, moisture conditioned, and compacted to a minimum of 95% and 93% of the maximum dry density, respectively, at -2% to +3% of optimum moisture content as determined by AASHTO T-180. In addition to density testing, base course should be proofrolled to verify subgrade stability.

It is recommended that Hot-Mix Asphaltic (HMA) pavement conform to CDOT grading SX or S specifications and consist of an approved 75 gyration Superpave method mix design. HMA pavement should be compacted to between 92% and 96% of the maximum theoretical density. An end point stress of 50 psi should be used. It is

recommended that rigid pavements consist of CDOT Class P concrete or alternative approved by the Engineer. In addition, pavements should conform to local specifications.

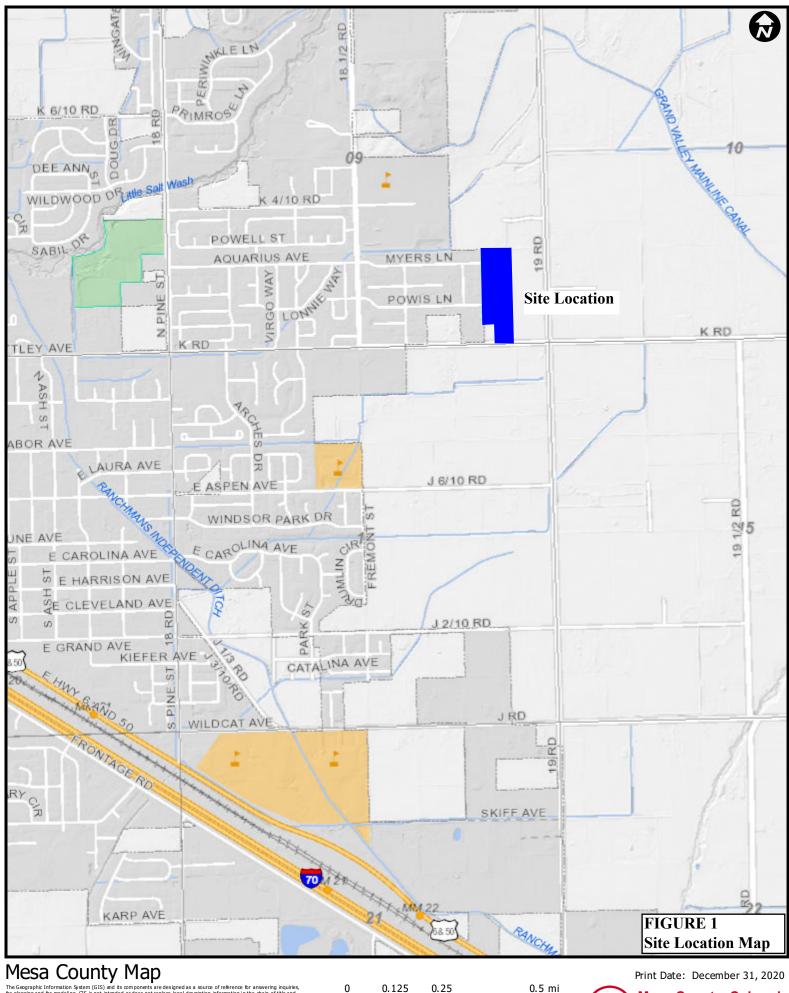
The long-term performance of the pavements is dependent on positive drainage away from the pavements. Ditches, culverts, and inlet structures in the vicinity of paved areas must be maintained to prevent ponding of water on the pavement.

8.0 GENERAL

The recommendations included above are based upon the results of the subsurface investigation and on our local experience. These conclusions and recommendations are valid only for the proposed construction.

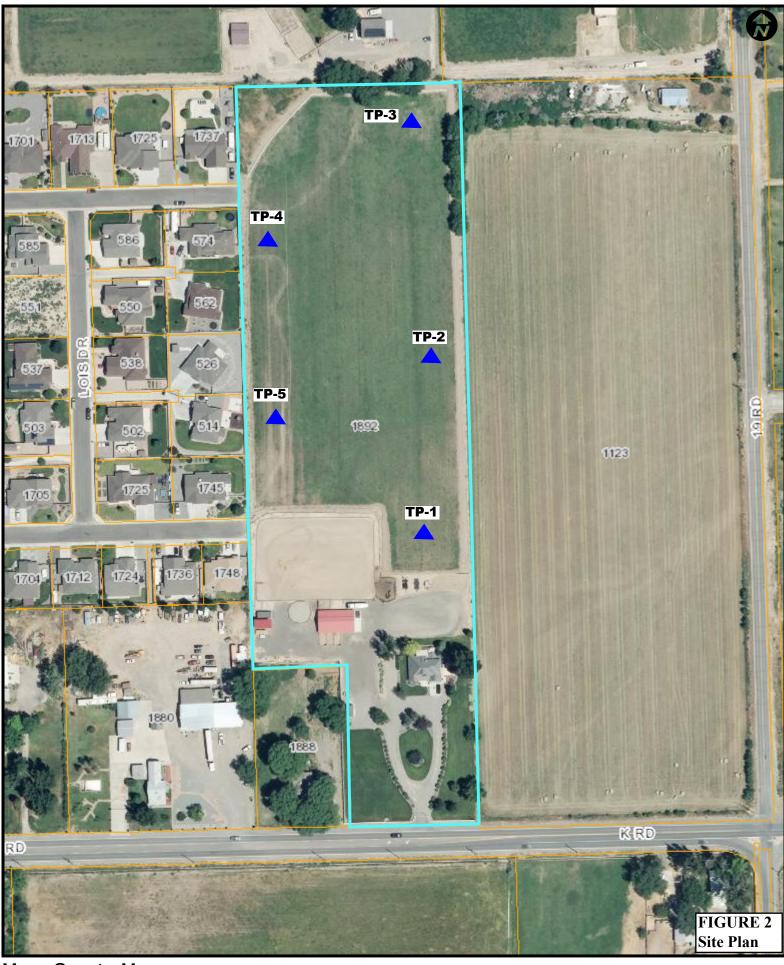
As discussed previously, the subsurface conditions at the site were fairly consistent. However, the precise nature and extent of any subsurface variability may not become evident until construction. As a result, it is recommended that HBET provide construction materials testing and engineering oversight during the entire construction process.

It is important to note that the recommendations herein are intended to reduce the risk of structural movement and/or damage, to varying degrees, associated with volume change of the native soils. However, HBET cannot predict long-term changes in subsurface moisture conditions and/or the precise magnitude or extent of volume change in the subsurface materials. Where significant increases in subsurface moisture occur due to poor grading, improper stormwater management, utility line failure, excess irrigation, or other cause, either during construction or the result of actions of the property owners, several inches of movement are possible. In addition, any failure to comply with the recommendations in this report releases Huddleston-Berry Engineering & Testing, LLC of any liability with regard to the performance of structures, flatwork, etc. at this site.


Huddleston-Berry Engineering and Testing, LLC is pleased to be of service to your project. Please contact us if you have any questions or comments regarding the contents of this report.

Respectfully Submitted: Huddleston-Berry Engineering and Testing, LLC

Michael A. Berry, P.E. Vice President of Engineering


FIGURES

The Geographic Information System (GIS) and its components are designed as a source of reference for answering inquiries, for planning and for modeling. GIS is not intended or does not replace legal description information in the chain of title and	0	0.12	5	0.25	5
other information contained in official government records such as the County Clerk and Recorders office or the courts. In addition, the representations of location in this GIS cannot be substitute for actual legal surveys.	H			 _	-
The information contained herein is believed accusate and suibble for the imited uses, and subject to the imitations, set forth above. Mess County makes no warrarty as to the accusacy or suitability of any information conbined herein. Users assume all risk and responsibility for any and al damages, including consequential damages, which may flow from the use's use of his information.	0	0.15	0.3		

Mesa County, Colorado GIS/IT Department

0.6 km

Messa County Map The Gographic Information system (GIS) and its components are designed as a source of reference for answering inquiries, for planning and for modeling GISs incui interded or does not replace legal description information in the dain of title and their information contained in difical government records such as the County Clerk and Recorders office or the courts. In addition, the representations of location in this GIS cannot be substitue for adual legal survey. The information contained herein is believed accuster and suitable for the limited uses, and subject to the limitations, set forth dove. Mess County maks no avairanty as to the accuscy or suitability of any information contained herein. Users assume all risk and responsibility for any and al damages, including consequential damages, which may flow from the use's use of this information.

0 0.015 0.03 0.06 mi 0.07 km 0 0.0175 0.035

Print Date: December 31, 2020

Mesa County, Colorado **GIS/IT Department** gis.mesad ounty.us

APPENDIX A Soil Survey Data

National Cooperative Soil Survey

Conservation Service

MA	P LEGEND		MAP INFORMATION
Area of Interest (AOI)	Spo	il Area	The soil surveys that comprise your AOI were mapped at
Area of Interest (A		ny Spot	1:24,000.
Soils	m Very	y Stony Spot	Warning: Soil Map may not be valid at this scale.
Soil Map Unit Poly	jons	t Spot	Enlargement of maps beyond the scale of mapping can cause
Soil Map Unit Lines	∆ Othe		misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of
Soil Map Unit Poin	s 🗳	cial Line Features	contrasting soils that could have been shown at a more detailed
Special Point Features	Water Features		scale.
Blowout		eams and Canals	Please rely on the bar scale on each map sheet for map
Borrow Pit	Transportation		measurements.
💥 Clay Spot	++++ Rail	s	Source of Map: Natural Resources Conservation Service
Closed Depression	🛹 Inter	rstate Highways	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
💥 Gravel Pit	JUS I	Routes	Maps from the Web Soil Survey are based on the Web Mercate
Gravelly Spot	🥪 Majo	or Roads	projection, which preserves direction and shape but distorts
🔕 Landfill	Loca	al Roads	distance and area. A projection that preserves area, such as th Albers equal-area conic projection, should be used if more
Lava Flow	Background		accurate calculations of distance or area are required.
Marsh or swamp	•	ial Photography	This product is generated from the USDA-NRCS certified data of the version date(s) listed below.
Mine or Quarry			
Miscellaneous Wat	er		Soil Survey Area: Mesa County Area, Colorado Survey Area Data: Version 11, Jun 8, 2020
O Perennial Water			Soil map units are labeled (as space allows) for map scales
Rock Outcrop			1:50,000 or larger.
Saline Spot			Date(s) aerial images were photographed: Sep 13, 2010—Au 8, 2017
Sandy Spot			
Severely Eroded S	oot		The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background
Sinkhole			imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Slide or Slip			Sinting of map this boundaries may be evident.
🦻 Sodic Spot			
yg cours open			

Map Unit Legend

percent slopes		Acres in AOI	Percent of AOI
Вс	Sagers silty clay loam, 0 to 2 percent slopes	0.7	7.0%
Tr	Turley clay loam, 0 to 2 percent slopes	9.9	93.0%
Totals for Area of Interest		10.6	100.0%

Map Unit Description

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this report, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named, soils that are similar to the named components, and some minor components that differ in use and management from the major soils.

Most of the soils similar to the major components have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Some minor components, however, have properties and behavior characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities. Soils that have profiles that are almost alike make up a *soil series*. All the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of a given series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Additional information about the map units described in this report is available in other soil reports, which give properties of the soils and the limitations, capabilities, and potentials for many uses. Also, the narratives that accompany the soil reports define some of the properties included in the map unit descriptions.

Report—Map Unit Description

Mesa County Area, Colorado

Bc—Sagers silty clay loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: k0bq *Elevation:* 4,490 to 5,900 feet

Mean annual precipitation: 6 to 9 inches Mean annual air temperature: 50 to 55 degrees F Frost-free period: 140 to 180 days Farmland classification: Prime farmland if irrigated

Map Unit Composition

Sagers and similar soils: 90 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Sagers

Setting

Landform: Terraces Landform position (three-dimensional): Tread Down-slope shape: Linear, concave Across-slope shape: Linear Parent material: Cretaceous source alluvium derived from sandstone and shale

Typical profile

Ap - 0 to 12 inches: silty clay loam *C - 12 to 25 inches:* silty clay loam *Cy - 25 to 60 inches:* silty clay loam

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.21 to 0.71 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Gypsum, maximum content: 5 percent
Maximum salinity: Very slightly saline to moderately saline (2.0 to 8.0 mmhos/cm)
Available water capacity: High (about 9.7 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 7c Hydrologic Soil Group: C Ecological site: R034BY106UT - Desert Loam (Shadscale) Hydric soil rating: No

Tr-Turley clay loam, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: k0d8 *Elevation:* 4,500 to 4,800 feet Mean annual precipitation: 6 to 9 inches Mean annual air temperature: 50 to 55 degrees F Frost-free period: 140 to 180 days Farmland classification: Prime farmland if irrigated

Map Unit Composition

Turley and similar soils: 90 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Turley

Setting

Landform: Stream terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Cretaceous slope alluvium derived from sandstone and shale

Typical profile

Ap - 0 to 10 inches: clay loam

- C1 10 to 20 inches: fine sandy loam
- C2 20 to 30 inches: clay loam
- C3 30 to 60 inches: loam

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.21 to 0.71 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 10 percent
Gypsum, maximum content: 4 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water capacity: High (about 9.6 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 5e Hydrologic Soil Group: C Ecological site: R034BY106UT - Desert Loam (Shadscale) Hydric soil rating: No

Data Source Information

Soil Survey Area: Mesa County Area, Colorado Survey Area Data: Version 11, Jun 8, 2020

Dwellings and Small Commercial Buildings

Soil properties influence the development of building sites, including the selection of the site, the design of the structure, construction, performance after construction, and maintenance. This table shows the degree and kind of soil limitations that affect dwellings and small commercial buildings.

The ratings in the table are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect building site development. *Not limited* indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. *Somewhat limited* indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. *Very limited* indicates that the soil has one or more features that are unfavorable for the specified use. The limitations can be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the table indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Dwellings are single-family houses of three stories or less. For dwellings without basements, the foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of 2 feet or at the depth of maximum frost penetration, whichever is deeper. For dwellings with basements, the foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of about 7 feet. The ratings for dwellings are based on the soil properties that affect the capacity of the soil to support a load without movement and on the properties that affect excavation and construction costs. The properties that affect the load-supporting capacity include depth to a water table, ponding, flooding, subsidence, linear extensibility (shrink-swell potential), and compressibility. Compressibility is inferred from the Unified classification. The properties that affect the ease and amount of excavation include depth to a water table, ponding, flooding, slope, depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, and the amount and size of rock fragments.

Small commercial buildings are structures that are less than three stories high and do not have basements. The foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of 2 feet or at the depth of maximum frost penetration, whichever is deeper. The ratings are based on the soil properties that affect the capacity of the soil to support a load without movement and on the properties that affect excavation and construction costs. The properties that affect the load-supporting capacity include depth to a water table, ponding, flooding, subsidence, linear extensibility (shrink-swell potential), and compressibility (which is inferred from the Unified classification). The properties that affect the ease and amount of excavation include flooding, depth to a water table, ponding, slope, depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, and the amount and size of rock fragments.

Information in this table is intended for land use planning, for evaluating land use alternatives, and for planning site investigations prior to design and construction. The information, however, has limitations. For example, estimates and other data generally apply only to that part of the soil between the surface and a depth of 5 to 7 feet. Because of the map scale, small areas of different soils may be included within the mapped areas of a specific soil.

The information is not site specific and does not eliminate the need for onsite investigation of the soils or for testing and analysis by personnel experienced in the design and construction of engineering works.

Government ordinances and regulations that restrict certain land uses or impose specific design criteria were not considered in preparing the information in this table. Local ordinances and regulations should be considered in planning, in site selection, and in design.

Report—Dwellings and Small Commercial Buildings

[Onsite investigation may be needed to validate the interpretations in this table and to confirm the identity of the soil on a given site. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the potential limitation. The table shows only the top five limitations for any given soil. The soil may have additional limitations]

	Dwell	ings and Small Comm	ercial Bu	ildings–Mesa County	Area, Col	orado	
Map symbol and soil name	map	Dwellings witho basements	out	Dwellings with base	ements	Small commercial b	uildings
	unit	Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value
Bc—Sagers silty clay loam, 0 to 2 percent slopes							
Sagers	90	Somewhat limited		Somewhat limited		Somewhat limited	
		Shrink-swell	0.03	Shrink-swell	0.03	Shrink-swell	0.03
Tr—Turley clay loam, 0 to 2 percent slopes							
Turley	90	Not limited		Not limited		Not limited	

USDA

Data Source Information

Soil Survey Area: Mesa County Area, Colorado Survey Area Data: Version 11, Jun 8, 2020

Roads and Streets, Shallow Excavations, and Lawns and Landscaping

Soil properties influence the development of building sites, including the selection of the site, the design of the structure, construction, performance after construction, and maintenance. This table shows the degree and kind of soil limitations that affect local roads and streets, shallow excavations, and lawns and landscaping.

The ratings in the table are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect building site development. *Not limited* indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. *Somewhat limited* indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. *Very limited* indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the table indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Local roads and streets have an all-weather surface and carry automobile and light truck traffic all year. They have a subgrade of cut or fill soil material; a base of gravel, crushed rock, or soil material stabilized by lime or cement; and a surface of flexible material (asphalt), rigid material (concrete), or gravel with a binder. The ratings are based on the soil properties that affect the ease of excavation and grading and the traffic-supporting capacity. The properties that affect the ease of excavation and grading are depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, depth to a water table, ponding, flooding, the amount of large stones, and slope. The properties that affect the traffic-supporting capacity are soil strength (as inferred from the AASHTO group index number), subsidence, linear extensibility (shrink-swell potential), the potential for frost action, depth to a water table, and ponding.

Shallow excavations are trenches or holes dug to a maximum depth of 5 or 6 feet for graves, utility lines, open ditches, or other purposes. The ratings are based on the soil properties that influence the ease of digging and the resistance to sloughing. Depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, the amount of large stones, and dense layers influence the ease of digging, filling, and compacting. Depth to the seasonal high water table, flooding, and ponding may restrict the period when excavations can be made. Slope influences the ease of using machinery. Soil texture, depth to the water table, and linear extensibility (shrink-swell potential) influence the resistance to sloughing.

Lawns and landscaping require soils on which turf and ornamental trees and shrubs can be established and maintained. Irrigation is not considered in the ratings. The ratings are based on the soil properties that affect plant growth and trafficability after vegetation is established. The properties that affect plant growth are reaction; depth to a water table; ponding; depth to bedrock or a cemented pan; the available water capacity in the upper 40 inches; the content of salts, sodium, or calcium carbonate; and sulfidic materials. The properties that affect trafficability are flooding, depth to a water table, ponding, slope, stoniness, and the amount of sand, clay, or organic matter in the surface layer.

Information in this table is intended for land use planning, for evaluating land use alternatives, and for planning site investigations prior to design and construction. The information, however, has limitations. For example, estimates and other data generally apply only to that part of the soil between the surface and a depth of 5 to 7 feet. Because of the map scale, small areas of different soils may be included within the mapped areas of a specific soil.

The information is not site specific and does not eliminate the need for onsite investigation of the soils or for testing and analysis by personnel experienced in the design and construction of engineering works.

Government ordinances and regulations that restrict certain land uses or impose specific design criteria were not considered in preparing the information in this table. Local ordinances and regulations should be considered in planning, in site selection, and in design.

Report—Roads and Streets, Shallow Excavations, and Lawns and Landscaping

[Onsite investigation may be needed to validate the interpretations in this table and to confirm the identity of the soil on a given site. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the potential limitation. The table shows only the top five limitations for any given soil. The soil may have additional limitations]

Roads and	Streets,	Shallow Excavations,	and Law	ns and Landscaping–I	Mesa Co	unty Area, Colorado			
Map symbol and soil		Lawns and landsca	aping	Local roads and st	reets	Shallow excavations			
name	map unit	Rating class and limiting features	Value	Rating class and limiting features	Value	Rating class and limiting features	Value		
Bc—Sagers silty clay loam, 0 to 2 percent slopes									
Sagers	90	Somewhat limited		Very limited		Somewhat limited			
		Dusty	0.50	Low strength	1.00	Dusty	0.50		
				Frost action	0.50	Unstable excavation walls	0.01		
				Shrink-swell	0.03				

Map symbol and soil name	Pct. of	Lawns and landsc	aping	Local roads and s	treets	Shallow excavati	ons
	map unit	Rating class and Value limiting features		Rating class and limiting features	Value	Rating class and limiting features	Value
Tr—Turley clay loam, 0 to 2 percent slopes							
Turley	90	Somewhat limited		Somewhat limited		Somewhat limited	
		Dusty	0.19	Low strength	0.56	Dusty	0.19
				Frost action	0.50	Unstable excavation walls	0.01

Data Source Information

Soil Survey Area: Mesa County Area, Colorado Survey Area Data: Version 11, Jun 8, 2020

Soil Features

This table gives estimates of various soil features. The estimates are used in land use planning that involves engineering considerations.

A *restrictive layer* is a nearly continuous layer that has one or more physical, chemical, or thermal properties that significantly impede the movement of water and air through the soil or that restrict roots or otherwise provide an unfavorable root environment. Examples are bedrock, cemented layers, dense layers, and frozen layers. The table indicates the hardness and thickness of the restrictive layer, both of which significantly affect the ease of excavation. *Depth to top* is the vertical distance from the soil surface to the upper boundary of the restrictive layer.

Subsidence is the settlement of organic soils or of saturated mineral soils of very low density. Subsidence generally results from either desiccation and shrinkage, or oxidation of organic material, or both, following drainage. Subsidence takes place gradually, usually over a period of several years. The table shows the expected initial subsidence, which usually is a result of drainage, and total subsidence, which results from a combination of factors.

Potential for frost action is the likelihood of upward or lateral expansion of the soil caused by the formation of segregated ice lenses (frost heave) and the subsequent collapse of the soil and loss of strength on thawing. Frost action occurs when moisture moves into the freezing zone of the soil. Temperature, texture, density, saturated hydraulic conductivity (Ksat), content of organic matter, and depth to the water table are the most important factors considered in evaluating the potential for frost action. It is assumed that the soil is not insulated by vegetation or snow and is not artificially drained. Silty and highly structured, clayey soils that have a high water table in winter are the most susceptible to frost action. Well drained, very gravelly, or very sandy soils are the least susceptible. Frost heave and low soil strength during thawing cause damage to pavements and other rigid structures.

Risk of corrosion pertains to potential soil-induced electrochemical or chemical action that corrodes or weakens uncoated steel or concrete. The rate of corrosion of uncoated steel is related to such factors as soil moisture, particle-size distribution, acidity, and electrical conductivity of the soil. The rate of corrosion of concrete is based mainly on the sulfate and sodium content, texture, moisture content, and acidity of the soil. Special site examination and design may be needed if the combination of factors results in a severe hazard of corrosion. The steel or concrete in installations that intersect soil boundaries or soil layers is more susceptible to corrosion than the steel or concrete in installations that are entirely within one kind of soil or within one soil layer.

For uncoated steel, the risk of corrosion, expressed as *low*, *moderate*, or *high*, is based on soil drainage class, total acidity, electrical resistivity near field capacity, and electrical conductivity of the saturation extract.

For concrete, the risk of corrosion also is expressed as *low*, *moderate*, or *high*. It is based on soil texture, acidity, and amount of sulfates in the saturation extract.

Report—Soil Features

			Soil Fe	eatures–Mesa Cour	ity Area, Co	olorado					
Map symbol and	Restrictive Layer				Subsidence		Potential for frost	Risk of corrosion			
soil name —	Kind	Depth to top	Thickness	Hardness	Initial	Total	- action	Uncoated steel	Concrete		
		Low-RV- High	Range		Low- High	Low- High					
		In	In		In	In					
Bc—Sagers silty clay loam, 0 to 2 percent slopes											
Sagers		_	_		0	0	Moderate	Moderate	Moderate		
Tr—Turley clay loam, 0 to 2 percent slopes											
Turley		_	_		0	0	Moderate	Moderate	Low		

Data Source Information

Soil Survey Area: Mesa County Area, Colorado Survey Area Data: Version 11, Jun 8, 2020

APPENDIX B Typed Test Pit Logs

verside Parkway unction, CO 81	eering & Testing, LLC 7 501				'	EST	ΡI					
		PROJEC		1892	K Road							
						tion C	0					
								PIT SI	ZE			
						DRY						
										FERRE	RC	
N	IATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID	LIMITS	3	FINES CONTENT (%)
SAND (sm) to Si (cl-ml), brown, i	andy SILT (ML) with layers of Silty 0 moist, loose to medium dense	CLAY with	GB 1					27	NP	NP	NP	99
	function, CO 81. 5-8005 neering 00545-0066 /19/20 RACTOR _Clien OD _Trackh/Bac D _Trackh/Bac SAND with Orga SAND with Orga SAND (sm) to Si i (cl-ml), brown, n b Classified GB-	function, CO 81501 5-8005 neering 00545-0066 /19/20 COMPLETED 11/19/20 RACTOR Client OD Trackh/Backhoe CHECKED BY WDA	hunction, CO \$1501 5-8005 neering PROJEC 00545-0066 PROJEC (19/20 COMPLETED 11/19/20 GROUNI RACTOR Client GROUNI OD Trackh/Backhoe AT CHECKED BY WDA AT MATERIAL DESCRIPTION SAND with Organics (TOPSOIL) SAND (sm) to Sandy SILT (ML) with layers of Silty CLAY with (cl-ml), brown, moist, loose to medium dense b Classified GB-1	hunction, CO 81501 s-8005 neeringPROJECT NAMEOGBPROJECT LOCATGBGBGB	hunction, CO 81501 5-8005 neeringPROJECT NAME 1892 PROJECT LOCATION PROJECT LOCATION PROJECT LOCATION PROJECT LOCATION RACTOR_CLIENTGROUND WATER LEVEL ODTrackh/BackhoeAT TIME OF EXCAAFTER EXCAVATAFTER EXCAVAT	Inaction, CO 81501 5-8005 neering 00545-0066PROJECT NAME _1892 K Road PROJECT LOCATIONGrand June GROUND KLEVATION GROUND WATER LEVELS: AT TIME OF EXCAVATION AT END OF EXCAVATION GO 000022 SAND with Organics (TOPSOIL) SAND (sm) to Sandy SILT (ML) with layers of Silty CLAY with 1 (cl-ml), brown, moist, loose to medium dense b Classified GB-1 GB 1	Inaction, CO 81501 58005 neering PROJECT NAME 1892 K Road OD545-0066 PROJECT LOCATIONGrand Junction, C /19/20 COMPLETED 11/19/20 GROUND ELEVATION	Inerting CO 81501 Sator neering COMPLETED 11/19/20 COMPLETED 11/19/20 GROUND ELEVATION Grand Junction, CO TEST GROUND WATER LEVELS: AT TIME OF EXCAVATION DRY AT END OF EXCAVATION DRY AFTER EXCAVATION DRY AFTER EXCAVATION DRY AFTER EXCAVATION MATERIAL DESCRIPTION AFTER EXCAVATION SAND with Organics (TOPSOIL) SAND (sm) to Sandy SILT (ML) with layers of Silty CLAY with 1 (d-ml), brown, moist, loose to medium dense b Classified GB-1	Junction, CO 81501 SN005 neering OC545-0066 PROJECT NAME 19920 COMPLETED 119/20 COMPLETED CHECKED BY WDA AT TIME OF EXCAVATION CHECKED BY WDA AT END OF EXCAVATION CHECKED BY WDA AT END OF EXCAVATION MATERIAL DESCRIPTION Watter Watter SAND with Organics (TOPSOIL) SAND (sm) to Sandy SILT (ML) with layers of Sitty CLAY with I (d-mt), brown, moist, loose to medium dense b Classified GB-1	Inaction, CO 81501 seering PROJECT NAME 1892 K Road 00545-0066 PROJECT LOCATION Grand Junction, CO /19/20 COMPLETED 11/19/20 GROUND ELEVATION Grand Junction, CO RACTOR Client GROUND WATER LEVELS: AT END OF EXCAVATION DRY AT END OF EXCAVATION IDRY AT END OF EXCAVATION IDRY AT END OF EXCAVATION IDRY MATERIAL DESCRIPTION AT END OF EXCAVATION IDRY AT END OF EXCAVATION IDRY SAND with Organics (TOPSOIL) AT END OF EXCAVATION IDRY AT END OF EXCAVATION IDRY SAND with Organics (TOPSOIL) AT END OF EXCAVATION IDRY AT END OF EXCAVATION IDRY SAND with Organics (TOPSOIL) AT END OF EXCAVATION IDRY AT END OF EXCAVATION IDRY SAND with Organics (TOPSOIL) AT END OF EXCAVATION IDRY AT END OF EXCAVATION IDRY SAND with Organics (TOPSOIL) AT END OF EXCAVATION IDRY AT END OF EXCAVATION IDRY SAND with Organics (TOPSOIL) AT END OF EXCAVATION IDRY AT END OF EXCAVATION IDRY b Classified GB-1 AT END OF EXCAVATION IDRY AT END OF EXCAVATION IDRY	Interction, CO. 81501 status preering 00545-0086 PROJECT LOCATION GROUND ELEVATION Test PIT SIZE OD COMPLETED 11/19/20 GROUND WATER LEVELS: AT TIME OF EXCAVATION DEP: AT END OF EXCAVATION DEV AFTER EXCAVATION MATERIAL DESCRIPTION ATTEND OF EXCAVATION W SAND with Organics (TOPSOIL) SAND with Organics (TOPSOIL) SAND (sm) to Sandy SILT (ML) with layers of Silly CLAY with I (d-mt), brown, moist, loose to medium dense b Classified GB-1	Uniction, CO. 81501 ssoud PROJECT NAME 1992 K. Road 00545-0006 PROJECT LOCATION Grand Junction, CO (1920) COMPLETED 11/19/20 GROUND ELEVATION TEST PIT SIZE COMPLETED 11/19/20 GROUND WATER LEVELS: OTHOR (Soldoce) NUM NUM OD_Track/nBackhoe ATTER EXCAVATION DRY ATTERERCOVATION DRY MATERIAL DESCRIPTION Matterial Description Matterial Description Sando (Soldoce) NUM Sando (Soldoce) NUM NUM

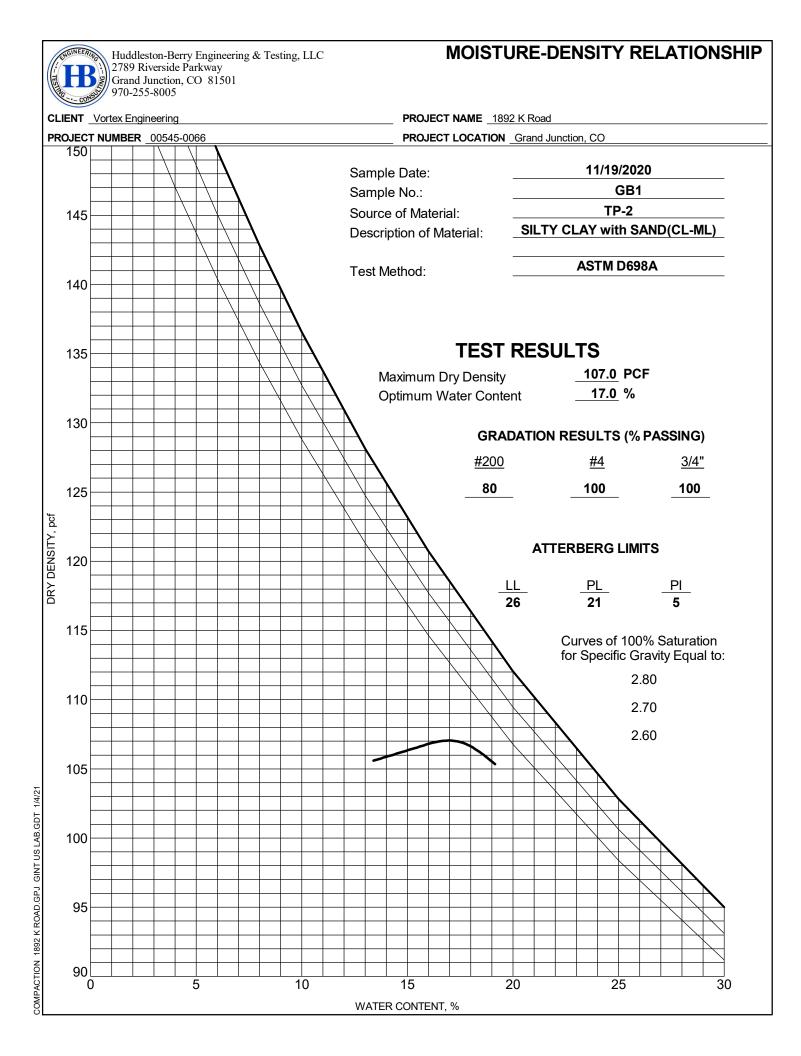
H	278	ddleston-Berry Engineering & Testing, LLC 39 Riverside Parkway and Junction, CO 81501 0-255-8005				Т	EST	' Pl'	TN	UMI		R TF E 1 C	
	C_Vortex E	Engineering ER 00545-0066					tion C						
DATE S	STARTED	COMPLETED	GROUND	ELEVA									
EXCAV	ATION ME	ETHOD Trackh/Backhoe	AT	TIME OF	EXCA	VATION _							
		D CHECKED BY _WDA				vation <u>[</u> on							
	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	TA FIMIT LIMIT			FINES CONTENT
0.0 <u>×</u>	<u>, 1, , , , , , , , , , , , , , , , , , </u>	Silty SAND with Organics (TOPSOIL)											
2.5		Silty SAND (sm) to SILT (ml) with layers of Silty CLAY with s CL-ML), brown, moist, loose to medium dense	and										
		*Lab Classified GB-1		m GB 1	-				27	26	21	5	8
<u>5.0</u>													
		Bottom of test pit at 6.5 feet.											

TEAL PROF	B B CONSUL	Huddleston-Berry Engineering & Testing, LLC 2789 Riverside Parkway Grand Junction, CO 81501 970-255-8005				Т	EST	Γ PI	TN	UMI		R TF E 1 C			
CLIE	NT Voi	tex Engineering	PROJEC	T NAME	1892	K Road									
PROJ		JMBER 00545-0066					tion, C	0							
DATE	STAR	TED 11/19/20 COMPLETED 11/19/20							PIT S	ZE					
EXCA	VATIO	N CONTRACTOR _Client													
		N METHOD _Trackh/Backhoe													
LOGO	GED BY	SD CHECKED BY WDA	A	END OF	EXCA	VATION _	DRY								
NOTE	s		A	TER EXC	CAVAT	ION									
0 DEPTH 0 (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIMIT LIMIT	PLASTIC LIMIT LIMIT		FINES CONTENT (%)		
 		Silty SAND with Organics (TOPSOIL) Silty SAND (sm) to SILT (ml) with layers of Silty CLAY with S (cl-ml), brown, moist, loose to medium dense	Sand												
5.0		Bottom of test pit at 6.0 feet.													

Engl	B	Huddleston-Berry Engineering & Testing, LLC 2789 Riverside Parkway Grand Junction, CO 81501 970-255-8005				Т	EST	' Pl'	TN	UMI		R TF E 1 C	
CLIE	- CONS	ex Engineering PR			1802	K Road							
						Grand Junc	tion C	0					
		MBER 00545-0066 PR ED 11/19/20 COMPLETED 11/19/20 GR								7F			
								1231		ZL			
		CONTRACTOR Client GR					עסס						
		METHOD Trackh/Backhoe											
		SD CHECKED BY WDA				VATION _[
NOTE	ES		AFT	ER EXC	AVAT	ION							
0. DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)		PLASTIC PLASTIC LIMIT LIMIT	3	FINES CONTENT (%)
 		Silty SAND with Organics (TOPSOIL) Silty SAND (SM) to SILT (ml) with layers fo Silty CLAY with Sand (cl-ml), brown, moist, loose to medium dense **Lab Classified GB-1		n GB	-				10	NP	NP	NP	36
5.0		Bottom of test pit at 6.0 feet.											

Engle I	Ballin - CONSUL	Huddleston-Berry Engineering & Testing, LLC 2789 Riverside Parkway Grand Junction, CO 81501 970-255-8005				Т	EST	Γ PI	TN	UME		R TP E 1 C			
CLIE	NT Voi	tex Engineering	PROJEC	T NAME	1892	K Road									
PRO.		JMBER 00545-0066					tion, C	0							
DATE		TED 11/19/20 COMPLETED 11/19/20							PIT SI	ZE					
EXCA		N CONTRACTOR _Client													
		N METHOD _Trackh/Backhoe													
LOG	GED BY	SD CHECKED BY WDA	AT	END OF	EXCA	VATION _	DRY								
NOTE	ES		AF	TER EXC	CAVAT	ION									
0.0 DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT LIMIT		FINES CONTENT (%)		
		Silty SAND with Organics (TOPSOIL) Silty SAND (sm) to SILT (ml) with layers of Silty CLAY with S (cl-ml), brown, moist, loose to medium dense Bottom of test pit at 6.0 feet.	iand												

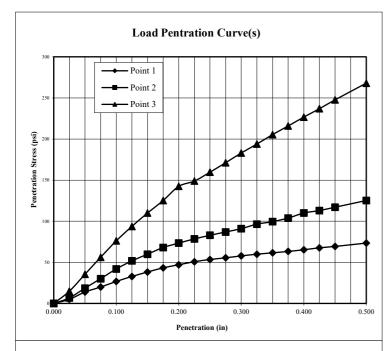
APPENDIX C Laboratory Testing Results


	ENGINE TEST	2789	leston-Berry Engine Riverside Parkway I Junction, CO 815 55-8005		Testing,	LLC		ATTERBERG LIMITS' RESULTS
		300						
		CT NUMBER	gineering R _00545-0066					PROJECT NAME 1892 K Road PROJECT LOCATION Grand Junction, CO
F	NOJL	60	<u>00040-0000</u>					
		50					CL	СН
	P L A S T	40—						
	I C I T Y	30—						
	I D E X	20—					/	
	х	10	ML				(ML)	(MH)
		0					\bigcirc	
		σ	20	J		40		60 80 100
	Sp	ecimen lo	lentification	LL	PL	PI	#200	
	TP	-1, GB1	11/19/2020	NP	NP	NP	99	SILT(ML)
		-2, GB1	11/19/2020	26	21	5	80	SILTY CLAY with SAND(CL-ML)
		-4, GB1	11/19/2020	NP	NP	NP	36	SILTY SAND(SM)
-								
-								
╞								
۲ 13								
DT 1/4/21								
GINT US LAB.GDT								
K ROAD.GPJ								
1892 K R								
۲Þ								

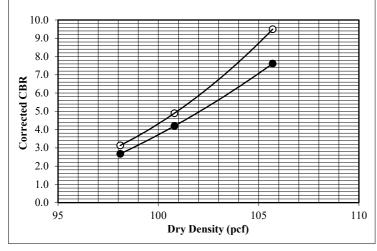
Huddleston-Berry Engineering & Testing, LLC 2789 Riverside Parkway Grand Junction, CO 81501 970-255-8005

GRAIN SIZE DISTRIBUTION

			v En	gineerin	na																	DD			۰т	NA	м	E_18	02	ĸ	P	220														
				R _0054	-	066	3																											rtior	n (20										
<u> </u>	OULUI	NO		. SIEVE	OPE		١G						1								EVE	ΞN	IUN	/IBE	RS	S				1		u u				HY	DRC	OME	ETE	ER						
	100			6 4	3		21.	.5	13	/4 :	1/2	<u>3/8</u> 	Π	3 	4	6		810) 1. 	4 16		0 : TT	30	40) 5	50 6 H	50 	1001	40 -	20	0	Т	Г	T	Т										1	
	95 -									<u>:</u>					:						\parallel	\parallel		:	4	Ā	$\left \right $							_												
	90														:																															
																												/	\langle																	
	85 -														:												ľ																			
	80									<u>.</u>		+			:								+				-	\setminus					+													
	75							_		:		+	+	_	:			+			+	\parallel	+	:			+	+				-	-		+											
	70									<u>:</u> :																	_					_			_											
	65									:					:																															
GHT	60									:					:																															
WEI										:					:																															
ς ΒΥ	55 -									:		\parallel			:						\parallel		t						\setminus			1			1					1					1	
PERCENT FINER BY WEIGHT	50	+								:		+	\parallel		:		-				+	\parallel	+				+		ľ		\parallel	+			+		-	$\left \right $							1	
NTF	45	_					$\left \right $	_		:		+	H		:		-	+			╫	\parallel	+				+					+	\vdash	-	+		+			-					-	
RCE	40											\parallel			:												_			\! 					_											
ЫЦ	35 -									<u>:</u>																				ķ																
															:																															
	30									:					÷																															
	25 -									÷		T			:			1																												
	20									: : :		+			:												+																			
	15						$\left \right $	-		: :		╫	H		:		+	+			╫	H	+				+					+	\vdash	\vdash	+		+			+	-					
	10									: :		\parallel			:								_	:			_								_											
	5-									:		\parallel			:			_																	_											
	0									:					:																															
				10	0							10									1								0.1	1							0.0	1						0.0	001	
	Г																GF	RA	IN	SIZ	ΣEΙ				ME	ETE	R	S		_															٦	
		С	OBE	BLES	-		coa		R/	1		ine	<u> </u>			coa	area	_		m	edi		NA N				fi	ne		_					S	LT	0	R	Cl	_A`	Y					
	L					_	000	100																																						
∣ S ●	pecim TP-1			ntificati 11/20													C				cat ML		n											-	LI NI		-	PL NP			PI NP	-	С	c		Cu
	TP-1 TP-2			11/20		+						Ş	şII	.Т	Y	CI	_Δ				IVIL I S		NΓ)((CL	N	11_1)						-	26			אר 21			<u>л</u> р 5	+				
	TP-4			11/20											•						NE			· ·				,						-	N		-	NP			NP	,				
																								<u> </u>																						
																	1																													
S	•			tificati					00				D	60)				D	30		+		C	01	0		%		Gra		el	_	%		anc 4	1			%§	Silt				Cla	ıy
	TP-1 TP-2			11/20 11/20		+			18 18		+						\vdash					+						+		0.0 0.0			+		1. 20								8.6 9.9			
		-		11/20		+		0.				().1	124	4		\vdash					+						+		0.0					20 63								5.5 6.4			
\square		, -	-		-			-														╡						1					+			-										



CALIFORNIA BEARING RATIO ASTM D1883


Project No.:	00545-0066	Authorized By:	Client	Date:	11/19/20
Project Name:	1892 K Road	Sampled By:	SD	Date:	11/19/20
Client Name:	Vortex Engineering	Submitted By:	SD	Date:	11/19/20
Sample Number	: 20-0891 Location: TP2, GB1	Reviewed By:	MAB	Date:	

Compaction Method ASTM D698,	Method A		Sample Data						
			Point 1	Point 2	Point 3				
Maximum Dry Density (pcf):	Blow	vs per Compacted Lift:	15	25	56				
107.0	S	urcharge Weight (lbs):	10.0	10.0	10.0				
Opt. Moisture Content (%):	Dry Dens	sity Before Soak (pcf):	98.1	100.8	105.7				
17.0	Dry De	nsity After Soak (pcf):	98.0	100.1	104.5				
Sample Condition:	e t	Bottom Pre-Test	16.4	16.1	18.1				
Soaked	oistur onten (%)	Top Pre-Test	15.7	15.9	16.1				
Remarks:	Moisture Content (%)	Top 1" After Test	24.9	23.7	22.1				
	20	Average After Soak:	24.1	23.0	21.3				
	Pere	cent Swell After Soak:	0.1	0.7	1.1				

I

			Pene	etration	Data						
	Point 1			Point 2			Point 3				
Dist.	Load	Stress	Dist.	Load	Stress	Dist.	Load	Stress			
(in)	(lbs)	(psi)	(in)	(lbs)	(psi)	(in)	(lbs)	(psi)			
0.000	0	0	0.000	0	0	0.000	0	0			
0.025	15	5	0.025	20	7	0.025	44	15			
0.050	41	14	0.050	55	19	0.050	105	36			
0.075	59	20	0.075	89	30	0.075	166	56			
0.100	79	27	0.100	124	42	0.100	225	76			
0.125	97	33	0.125	153	52	0.125	277	94			
0.150	113	38	0.150	177	60	0.150	325	110			
0.175	128	43	0.175	201	68	0.175	370	125			
0.200	139	47	0.200	217	73	0.200	421	142			
0.225	150	51	0.225	232	78	0.225	440	149			
0.250	158	53	0.250	245	83	0.250 472 160					
0.275	164	55	0.275	257	87	0.275	506	171			
0.300	171	58	0.300	269	91	0.300	541	183			
0.325	177	60	0.325	285	96	0.325	573	194			
0.350	182	62	0.350	294	99	0.350	607	205			
0.375	187	63	0.375	307	104	0.375	638	216			
0.400	193	65	0.400	325	110	0.400	670	227			
0.425	200	68	0.425	334	113	0.425	700	237			
0.450	205	69	0.450	346	117	0.450	732	248			
0.500	217	73	0.500	370	125	0.500	792	268			
-			~	1 05 5							
			Correct		. @ 0.1'	'					
	2.7			4.2			7.6				
			Correct		. @ 0.2'						
	3.1			4.9		9.5					

Penetra	ation Distance Correction	ion (in)
0.000	0.000	0.000