Construction Stormwater Management Plan For Grand Valley Estates Filing II

October 4, 2018

Introduction

This CSWMP for **Grand Valley Estates Filing II** is formatted and presented consistent with Mesa County SWMM and State of Colorado SWMP criteria, and local guidance provided by the 5-2-1 Drainage Authority. There are no exceptions to State required inclusions in the plan. The following CSWMP is organized and presented as follows:

Section 1: Site Description Section 2: Site Map (Large map included in Appendix C) Section 3: Stormwater Management Controls Section 4: Final Stabilization Section 5: Inspection and Maintenance Procedures Appendix A: BMP Map Appendix B: 5-2-1 Drainage Authority Inspection Report Template Appendix C: Best Management Practice (BMP) Details

This CSWMP was prepared by Jon Martinez of River City Consultants, Inc. 744 Horizon Court Suite 110, Grand Junction, CO 81506. This plan shall be updated with changes and modifications by the SWMP Administrator or someone designated to make changes by them. In addition to this plan the following materials shall also be available for review:

- BMP Map (with mark-ups to reflect on-site conditions)
- Copies of completed Inspection Reports

This plan and the materials above should be made available to the public for viewing upon request.

1. Site Description

a) The nature of the construction activity at the site. The description should include the physical location and address or cross streets, type of project, a summary of the grading activities, installation of utilities, paving, excavation, landscaping, and the final disposition of the property.

The proposed Grand Valley Estates Filing II is located at the southwest corner of Fremont Street and J 2/10 Road within the city limits of Fruita, CO. The project site is positioned within a single parcel (Parcel No. 2697-163-00-130) and has the current address of 1849 J 2/10 Road. In more legal terms, the project site is situated in the West ½ of the NW ¼ of the SW ¼ of the SE ¼ of Section 16, Township 1 North, Range 2 West of the Ute Meridian, Mesa County, Colorado.

Construction activities will consist of: installation of perimeter BMPs, rough site grading, installation of water quality structures, utility installation (water, sewer, storm drain, and various dry utilities), installation of curb, v-pan, paving, building construction, finished/fine grading activities, and landscaping/restoration.

b) The proposed sequence for major activities. Describe the sequence of events involved in the construction project, such as grading, excavation, final landscaping, etc.

- 1. File N.O.I;
- 2. Pre-construction meeting;
- 3. Install perimeter controls (earthen dikes, sediment control logs (wattles), silt fence, filter berms, etc.);
- 4. Access stabilization (vehicle tracking control, surface hardening, etc.);
- 5. Sediment control (rock socks, surface roughening, etc.).
- 6. Storm water controls (earthen dikes and drainage swales, detention pond, etc.);
- 7. Grading (to be phased such that disturbed area is minimized). Install additional controls as required due to phasing, construction methodology, site conditions, etc. (controls include additional perimeter controls, surface roughening, surface hardening, etc.);
- 8. Utility Installation (to be phased with grading and other construction activities);
- 9. Stabilize disturbed areas as soon as possible after construction to prevent erosion (surface roughening, surface hardening, landscaping, mulching, seeding, etc.);
- 10. Building construction (relocate controls or install additional controls as necessary);
- 11. Final stabilization (surface hardening (roofs, concrete, & asphalt), landscaping, permanent seeding/planting, etc.);
- 12. Remove temporary BMPs after construction activities are complete and ground cover has been established to 70% of pre-construction conditions via vegetation, landscaping, surface hardening, or a combination there of; and
- 13. File N.O.T.

c) Estimates of the total area of the site, and the area and location expected to be disturbed by clearing, excavation, grading, or other construction activities.

The parcels is approximately 4.33 acres and it is expected that the entire parcel will be disturbed during construction.

d) A summary of any existing data used in the development of the site construction plans or SWMP that describe the soil or existing potential for soil erosion.

According to the NRCS web site, the soils present at the site consist entirely of Fruitland sandy clay loam (0-2% slopes). Fruitland sandy clay loam is classified as Hydrologic Soil Group B. Group B soils have higher infiltration rates than Groups C and D Soils.

e) A description of the existing vegetation at the site and an estimate of the percent vegetative ground cover. Existing vegetation at the proposed project site consists of desert shrubs, grasses, various weeds and invasive species. Existing vegetation is in good condition (>70% cover).

f) The location and description of all potential pollution sources, including ground surface disturbing activities, vehicle fueling, storage of fertilizers or chemicals, etc.

Pollutant	Potential Sources	BMPs for Pollutant
Sediment	Erosion of exposed soil, dust,	Sediment Control Log, Silt Fence,
	drainages, stockpiles, vehicle tracking,	Earthen Dike, Surface Hardening,
	etc.	Rock Socks, Street Sweeping, etc.
Toxic Chemicals	Poor storage and handling of materials,	Handling and storage as per
	spills, illegal dumping, pesticide	Manufacturer's recommendations,
	application, etc.	Spill Prevention, Control, and Counter
		Measures
Bacteria	Leaking septic/sewer systems, pet &	Port-a-potties and bathrooms; Spill
	wildlife waste, illicit connections to	Prevention, Control, and Counter
	storm drain system, etc.	Measures
Nutrients	Fertilizers, leaking septic/sewer,	Handling, storage, and application as
	decaying plant and animal waste, etc.	per Manufacturer's recommendations;
		Spill Prevention, Control, and Counter
		Measures
Oxygen Demand	Sediment, nutrients, organics, and other	See BMPs for pollutants above
	pollutants (particulates and soluble)	
Fuels, Oils, and	Streets, highways, parking lots,	Spill Prevention, Control, and Counter
Greases	equipment fueling & maintenance,	Measures
	illegal dumping, atmospheric deposition	
·· _ ·	etc.	
Litter/Trash	Human Activities	Good Housekeeping
Metals	Streets, highways, parking lots, building	Street sweeping, Material Handling
	materials, recyclable materials,	and Storage as per Manufacturer's
	industrial activities, atmospheric	recommendations, Spill Prevention,
	deposition, etc.	Control, and Counter Measures
Elevated Water	Sunlight, removal of vegetation,	Proper maintenance of BMPs
Temperatures	impervious areas, shallow storage of	
	water, etc.	
Concrete Wash-out	Washing out of concrete trucks and	Installation & use of a concrete wash-
Waste Water	concrete tools (including stucco)	out area
	iption of any anticipated allowable sources of	-
(e.g., uncontaminated sp	rings, landscape irrigation return flow, constru	action dewatering, and concrete washout)

There are no known springs on-site. The site has no known access to irrigation water. A concrete washout will be installed on-site. The concrete washout will be installed as per the UDFC detail included in this plan, signed, and used as needed by concrete suppliers.

h) The name of the receiving water(s) and the size, type and location of any outfall(s). If the stormwater

Grand Valley Estates Filing II CSWMP

discharge is to a municipal separate storm sewer system, the name of that system, the location of the storm sewer discharge, and the ultimate receiving water(s).

The project is located within the 5-2-1 Drainage Authority (MS4) boundary and will have a single concentrated discharge point for stormwater. The discharge point is an existing catch basin located on the east side of Fremont Street at the west end of the parcel. This catch basin carries runoff through an existing storm drain system to an existing detention pond in the Grand Valley Estates Filing I neighborhood, approximately 600 feet to the west. The detention pond will then discharge flows through a retro-fitted water quality structure that releases runoff to the 117 Major Drainage Basin watershed, and ultimately to the Colorado River ~2 miles south of the site.

2. Site Map

The SWMP must include a site map showing the entire area and identifying the following components:				
a) Construction site boundaries;				
See construction site boundary shown on map.				
b) All areas of ground surface disturbance;				
See perimeter controls shown on map.				
c) Areas of cut and fill;				
See existing and proposed contours on map.				
d) Areas used for storage of building materials, equipment, soil, or waste;				
These areas have been designated on the map.				
e) Locations of dedicated asphalt or concrete batch plants;				
None of these facilities will be located on-site for this project.				
f) Locations of all structural BMPs;				
See map for BMP locations.				
g) Locations of non-structural BMPs as applicable; and				
See map for BMP locations.				
h) Locations of springs, streams, wetlands and other surface waters.				
There are no surface waters within or immediately adjacent to this site.				

3. Stormwater Management Controls

The SWMP must include a description of all stormwater management controls that will be implemented as part of the construction activity to control pollutants in stormwater discharges. The appropriateness and priorities of stormwater management controls in the SWMP shall reflect the potential pollutant sources identified at the facility. The description of the stormwater management controls shall address the following, at a minimum:

a) <u>SWMP Administrator</u>- The SWMP shall identify a specific individual(s), position, or title who is responsible for developing, implementing, maintaining, and revising the SWMP. The activities and responsibilities of the administrator shall address all aspects of the facility's SWMP.

The SWMP Administrator will be:

Name:_____

Phone:_____

Email:

The SWMP Administrator will be responsible for developing, maintaining, implementing, and revising the SWMP. The SWMP Administrator will have the authority to adequately manage and direct day-to-day stormwater quality management activities at the site and is qualified in Erosion and Sediment Control procedures.

b) <u>Identification of Potential Pollution Sources</u>- All potential pollutant sources, including materials and activities, at a site must be evaluated for the potential to contribute pollutants to stormwater discharges. The SWMP shall identify and describe those sources determined to have the potential to contribute pollutants to stormwater discharges, and the sources must be controlled through BMP selection and implementation, as required in paragraph (c) below. At a <u>minimum</u>, each of the following sources and activities shall be evaluated for the potential to contribute pollutants to stormwater discharges, and identified in the SWMP if found to have such potential:

Please refer to Section 1.f above. The main pollutant sources for this project are:

- Disturbed soil main potential pollutant sediment BMPs include, but are not limited to: surface roughening, surface hardening, earthen dike/drainage swale, sediment control logs, silt fence, rock socks, vehicle tracking control, street sweeping, etc.
- 2. Concrete concrete washout and cleanup waste & wastewater BMP is the concrete washout
- 3. Trash worker and project generated trash BMP is good housekeeping

1) All disturbed and stored soils;

Please refer to Section 1.f above. Phase grading to minimize the disturbed area at all times. As soon as possible after completion of grading activities, all disturbed areas will be stabilized. Stabilization may be by any of the following: surface hardening (asphalt, concrete, roof, etc.), landscaping, seeding (permanent or temporary), surface roughening, mulching, or other acceptable methods (as long as an installation & maintenance detail for said method is added to the Appendix of this report).

Disturbed areas of the construction site that will not be re-disturbed for 21 days or more must be stabilized (as noted above) by the 14th day after the last disturbance. If construction is suspended, or sections completed, stabilized areas must be protected to the extent possible. BMPs for stabilized areas include street sweeping, rock socks, inlet protection, sediment control along the back of walk (such as an earthen dike or sediment

control log), etc.

Soil and aggregate stockpiles shall have a sediment control BMP on the downslope side. This can include silt fence, earthen dike/drainage swale, or sediment control log. The BMP does not need to be specific to the stockpile, if the stockpile is within perimeter controls then the downstream perimeter controls will suffice. Storage areas should be outside of concentrated drainage pathways to the extent possible.

2) Vehicle tracking of sediments;

Please refer to Section 1.f above.

Vehicle tracking control or stabilized entry-ways will be installed at entrances/exits between stabilized and unstabilized areas. Details for the vehicle tracking control and stabilized entry-way BMPs can be found in Appendix C.

If VTC or SEW are not practical to use or install than another BMP or other BMPs will be used such street cleanup/sweeping. Street cleanup and sweeping may be required even if VTC and SEW are used if significant vehicle tracking of sediments occurs. Street cleanup/sweeping will remove tracked sediment and materials from internal and/or adjacent streets before they come into contact with stormwater or enter the storm drain system. Street cleanup/sweeping should be performed any time visible removable amounts of soil or material is present on the streets. Swept up material shall be properly disposed of at a facility accepting said waste.

3) Management of contaminated soils;

Please refer to Section 1.f above.

All federal (e.g., EPA, OSHA), state, and local regulations and laws apply. Proper training, notification, PPE, procedures, handling, disposal, etc. are the responsibility of the General Contractor. Further it is the General Contractor's responsibility to ensure all sub-contractors are properly trained and follow said rules and regulations (including, but certainly not limited to this plan).

In the event of a spill the proper authorities shall be notified immediately, work shall stop in the immediate area of the spill, and the MSDS for that material should be consulted for health and safety, containment, and cleanup procedures. The spill will be properly cleaned up by qualified personnel and disposed of properly. A paper trail will document the entire proceeding and all applicable regulations and/or laws will be followed and adhered to.

4) Loading and unloading operations;

Please refer to Section 1.f above.

Loading and unloading shall occur in low traffic areas. Flaggers and spotters should be used as needed or if loading or unloading must be done in an area with traffic. When possible do not work around overhead lines (i.e., power). If working around overhead lines use a spotter. Storage areas should be located outside of concentrated drainage pathways (see BMP Map for locations).

5) Outdoor storage activities (building materials, fertilizers, chemicals, etc.

Please refer to Section 1.f above.

Non-toxic building materials can be stored outside uncovered. Toxic materials (chemicals, paints, fertilizers, etc.) will use covered storage (i.e., inside of the building under construction or under a tarp). Materials with a MSDS will be stored under the conditions noted on the MSDS and/or by the manufacture. If covered storage is not available then storage shall be in an area where runoff from that area is retained (e.g., bermed area, or depressed area). All storage areas should be located outside of concentrated drainage pathways.

6) Vehicle and equipment maintenance and fueling;

Prior to site entry equipment shall be cleaned, free of leaks, and in good working condition. Equipment left on-site shall be stored on compacted (mostly) level ground. Prior to leaving the site equipment should be "gross cleaned". Gross cleaning shall include removal of loose and caked on soil or other material prior to loading with a shovel and/or broom.

Fueling of equipment shall occur on compacted level ground. The fueling truck and equipment being fueled shall be blocked and parking brake/lock-out applied during fueling. A spill kit shall be present on the fuel truck at all times when the truck is on-site and the operator of the fuel truck shall be trained and knowledgeable in the spill kits use.

Only minor maintenance (greasing, minor adjustments, etc.) of equipment shall be performed on site. No maintenance with the potential for a reportable spill is to be conducted on-site. The exception to this rule is fixing a piece of equipment to a point so it can be transported off-site and fixed.

7) Significant dust or particulate generating processes;

The Contractor shall have a water truck or other acceptable method available for wetting soils and preventing airborne sediment transport via dust. The water truck does not necessarily need to be onsite, but it must be available to use if it is needed.

8) Routine maintenance activities involving fertilizers, pesticides, detergents, fuels, solvents, oils, etc.;

These activities shall follow the SPCC guidelines below. Please note when using the procedure below it is still the Contractor's complete responsibility to ensure compliance with local, State, and Federal Regulations regarding spills, employee training, hazard communication, and health and safety. By using the below procedure, the Contractor implies that they agree to absolve River City Consultants, Inc. of any and all potential liability associated with using said procedures.

Generic SPCC:

- 1. Store all materials (hazardous and non-hazardous) according to manufacturer's recommendations and standard practice. This includes toxic chemicals, fertilizers, building materials/supplies, equipment, material stockpiles, etc.
- 2. Keep Material Safety Data Sheets (MSDS's) as required by various regulations.
- 3. Train employees as required by various regulations (e.g., HAZCOMM and spill recognition).
- 4. Upon discovery of a spill:
 - a. Survey the area for danger. Leave area immediately if a danger or hazard is present or perceived to be present and call 911 from a safe location.
 - b. Any of the steps below assume there are no dangers or hazards. If a hazard or danger is identified, perceived, or discovered at any point immediately leave the area and get to a safe location/distance and call 911.
 - c. Identify the source of the spill.
 - d. Determine if the source and be safely "turned off" or stopped.
 - e. Do you have the proper training and/or PPE to safely and correctly stop the source of the spill? If no, call 911. If you do then follow proper procedure and stop the source of the spill, then call 911.
 - *f.* If it is safe to do so and you have proper training, you may attempt to contain the spill and prevent it from reaching/spreading to any water body, storm drain, or off-site.
 - g. Notify your supervisor.
 - h. The supervisor should contact all appropriate agencies and personnel (e.g., Regulators, Cleanup Contractor, Owner/Client, etc.)
 - *i.* Any required spill reporting or spill logs should be completed as soon as possible and submitted or kept on record as required by regulations.

9) On-site waste management practices (waste piles, liquid wastes, dumpsters, etc.);

See the Good Housekeeping BMP detail in Appendix C.

Re-use and recycle whenever possible. Salvage and recycle bins and/or containers should be used if the supply of recyclable materials warrants their use. Recyclable containers/bins should be covered during non-working hours. Covers will prevent materials from blowing out of the containers and stormwater from contacting the materials within the containers.

Trash containers, dumpsters, and/or roll-offs should be located on-site in easy to access locations. A local company specializing in the collection and disposal of said waste material will be utilized and their responsibilities will include supplying and resupplying the site with containers, removing full containers from the site, proper transport and disposal of waste material to a facility accepting said waste. Trash containers/bins should be covered during non-working hours. Covers will prevent materials from blowing out of the containers and stormwater from contacting the materials within the containers.

Liquid wastes should not be placed in trash containers with "weep holes" that would allow the liquid wastes to leak/spill out of the container and onto the ground. Also, do not dispose of liquid wastes down storm drains or via the sanitary sewer. Do dispose of liquid wastes according to Manufacture's recommendations acceptable standard practice, and all local, state, and federal regulations.

The Contractor shall perform good housekeeping practices. Garbage and construction waste shall be cleaned up and disposed of on a regular basis (at least once a week). If garbage or construction debris is blown off-site during a windy day it is the Contractor's responsibility to retrieve and dispose of said materials.

Port-a-potties for human waste will be located on-site as shown on the BMP Map. These will be provided and maintained by a local company specializing in the port-a-potty business. Their responsibilities will include supply, cleaning, and maintenance of the port-a-potties, and proper disposal to a facility accepting said waste. Port-a-potties shall be staked or otherwise secured to prevent accidental tipping due to wind or other cause.

10) Concrete truck/equipment washing, including concrete truck chute and associated fixtures and equipment; A concrete washout shall be installed on-site as shown on the BMP Map. Installation shall be as per the detail in Appendix C. Note: Concrete washout water shall not be discharged to state surface waters or to storm sewer systems. On-site permanent disposal of concrete washout waste is not authorized. Discharge to the ground of concrete washout waste (in the designated concrete washout area) that will subsequently be disposed of off-site is authorized. See Part I.D.3.c of the Colorado Stormwater Discharge Permit.

11) Dedicated asphalt and concrete batch plants;

No asphalt or concrete batch plants will be built on-site for this project.

12) Non-industrial waste sources such as worker trash and portable toilets;

Please refer to 3.b.9 above.

13) Other areas or procedures where potential spills can occur.

Please refer to 3.b.8 above.

If present, Driller's mud for foundation piles can be placed within the foundation excavation as long as the excavation is depressed and will contain said waters (i.e., they cannot leave the foundation excavation area). Driller's mud can be discharged to the concrete washout. Driller's mud cannot be discharged directly to the ground outside of the limits of the foundation excavation. c) <u>Best Management Practices.</u> The SWMP shall identify and describe appropriate BMPs, including, but not limited to, those required by paragraphs 1 through 8 below, that will be implemented at the facility to reduce the potential of the sources identified in part b, above, to contribute pollutants to stormwater discharges. The SWMP shall clearly describe the installation and implementation specifications for each BMP identified in the SWMP to ensure proper implementation, operation, and maintenance of the BMP.

1. <u>Structural Practices for Erosion Control</u>. The SWMP shall clearly describe and locate all structural practices implemented at the site to minimize erosion and sediment transport. Practices may include, but are not limited to: straw bales, wattles/sediment control logs, silt fences, earth dikes, drainage swales, sediment traps, subsurface drains, pipe slope drains, inlet protection, outlet protection, gabions, and temporary or permanent sediment basins.

Please refer to the BMP Map in Appendix A of this plan. Appendix C of this plan contains the installation details for all of the BMPs listed within the report and on the BMP Map.

CSWM Plan Enhancement

This plan is intended to be a "living document" and it is expected that it will be modified and updated throughout the project. The purpose of these changes is to continuously improve and tailor the plan to the project. These modifications/updates will be documented in writing within the copy of the original plan located on-site. If alternate BMPs are used details for said BMPs should be added to Appendix C. At all times the BMP Map on-site shall be "redlined" to represent the current practices being used. The SWMP Administrator will be the person responsible for documenting any changes and keeping the documents up to date and current with field activities.

2) <u>Non-Structural Practices for Erosion and Sediment Control</u>. The SWMP shall clearly describe and locate, as applicable, all non-structural practices implemented at the site to minimize erosion and sediment transport. Description must include interim and permanent stabilization practices, and site-specific scheduling for implementation of the practices. The SWMP should include practices to ensure that existing vegetation is preserved where possible. Non-structural practices may include, but are not limited to: temporary vegetation, permanent vegetation, mulching, geotextiles, sod stabilization, slope roughening, vegetative buffer strips, protection of trees, and preservation of mature vegetation.

Please refer to the BMP Map in Appendix A of this plan. Appendix C of this plan contains the installation details for all of the BMPs listed within the report and on the BMP Map.

Education/Training

The purpose of this plan is not to hinder or interfere with the progression of work on this project, but instead to improve, complement, and enhance the overall outcome of this project. People working onsite are encouraged to read this plan. These workers may have suggestions based on their experience at other sites and projects. These suggestions should be brought to the attention of the SWMP Administrator, who may (at their discretion) modify this plan accordingly. 3) <u>Phased BMP Implementation</u>: The SWMP shall clearly describe the relationship between the phases of construction, and the implementation and maintenance of both structural and non-structural stormwater management controls. The SWMP must identify the stormwater management controls to be implemented during the project phases, which can include, but are not limited to, clearing and grubbing; road construction; utility and infrastructure installation; vertical construction; final grading; and final stabilization.

Stormwater pollution prevention measures can be categorized as follows:

- 1. Preventing contact between stormwater and the pollutant.
- 2. Preventing transport of the pollutant by stormwater.
- 3. Treatment to remove pollutants from stormwater.

These measures are listed in order according to effectiveness and priority. Obviously if the stormwater does not come into contact with a pollutant, it cannot become contaminated with the pollutant. Second, if the stormwater contacts the pollutant and the pollutant does not suspend or dissolve into the stormwater, the stormwater will remain uncontaminated. The best way to protect the soil surface and limit erosion is to preserve existing vegetative cover. Unfortunately, even with our best efforts stormwater will likely become contaminated with pollutants from the site. This is because by nature of the project portions of the site will be disturbed. Accordingly, efforts will be put in place to facilitate the removal of some of these pollutants from stormwater. This is especially true prior to discharge from the site, but most effective if done in series to ensure the pollutant levels never reach high levels and so the perimeter controls are not the only defense, but instead the last line of defense.

The construction activities will be structured to minimize the total area disturbed at any one time. Perimeter and outfalls BMPs, access stabilization will be installed prior to soil disturbance. Internal sediment and stormwater controls will be installed as grading and disturbance activities proceed. These internal controls will be shifted as new areas are disturbed and other areas are stabilized. It will be the SWMP Administrator's job/responsibility to document any changes to the location and type of BMPs used and to keep this plan up to date.

4) <u>Materials Handling and Spill Prevention</u>. The SWMP shall clearly describe and locate all practices implemented at the site to minimize impacts from procedures or significant materials that could contribute pollutants to runoff. Such procedures or significant materials could include: exposed storage of building materials; paints and solvents; fertilizers or chemicals; waste material; and equipment maintenance or fueling procedures. Areas or procedures where potential spills can occur <u>must</u> have spill prevention and response procedures identified in the SWMP.

As previously stated, materials will be handled according to their MSDS sheets and/or Manufacturer's recommendations. The Contractor should have a Spill Prevention, Control, and Countermeasure Plan (SPCC Plan). Please refer to Section 3.b.8 for generic Spill Prevention, Control, and Countermeasures in the absence of said plan. Please refer to the procedures described in Section 3.b and other areas of this report for the specifics of dealing with potential contaminates on this site.

5) <u>Dedicated Concrete or Asphalt Batch Plants.</u> The SWMP shall clearly describe and locate all practices implemented at the site to control stormwater pollution from dedicated concrete batch plants or dedicated asphalt batch plants covered by this certification.

No concrete or asphalt batch plants will be implemented at the site.

6) <u>Vehicle Tracking Control</u>. The SWMP shall clearly describe and locate all practices implemented at the site to control potential sediment discharges from vehicle tracking. Practices must be implemented for all areas of potential vehicle tracking, and can include: minimizing site access; street sweeping or scraping; tracking pads; graveled parking areas; requiring that vehicles stay on paved areas on-site; wash racks; contractor education; and/or sediment control BMPs, etc.

Vehicle tracking control will be installed at entrances/exits between stabilized and unstabilized areas when

possible or practical. A detail for the vehicle tracking control can be found in Appendix C. If VTC is not practical than an alternate BMP must be used such as stabilized entry-way or street sweeping/cleaning. Even with the use of VTC street sweeping may be required if significant vehicle tracking of sediments occurs. Street Sweeping will remove tracked sediment and materials from internal and/or adjacent streets before they come into contact with stormwater or enter the storm drain system. Street sweeping should be performed any time visible amounts of soil or material is present on the streets. Swept up material shall be placed in a waste container and properly disposed of at a facility accepting said waste.

7) <u>Waste Management and Disposal, Including Concrete Washout.</u> The SWMP shall clearly describe and locate the practices implemented at the site to control stormwater pollution from <u>all</u> construction site wastes (liquid and solid), including concrete washout activities. The practices used for concrete washout must ensure that these activities do not result in the contribution of pollutants associated with the washing activity to stormwater runoff. The SWMP shall clearly describe and locate the practices to be used that will ensure that no washout water from concrete washout activities is discharged from the site as surface runoff or to surface waters.

Please refer to Section 3.b.9 above for waste management and 3.b.10 for the concrete washout. Locations of these BMPs are shown on the BMP Map.

8) <u>Groundwater and Stormwater Dewatering</u>. The SWMP shall clearly describe and locate the practices implemented at the site to control stormwater pollution from the dewatering of groundwater or stormwater from excavations, wells, etc. Part I.D.3.d of the permit authorizes the conditional discharge of construction dewatering to the ground. For any construction dewatering of groundwater not authorized under a separate CDPS discharge permit, the SWMP shall clearly describe and locate the practices to be used that will ensure that no groundwater from construction dewatering is discharged from the site as surface runoff or to surface waters.

Groundwater is not anticipated to be an issue at this site. If groundwater does become an issue, the SWMP Administrator will modify this plan to address groundwater dewatering in compliance with all associated regulations. Stormwater dewatering of excavations will be conducted according to the detail in Appendix C.

4. Final Stabilization and Long-term Stormwater Management

a) The SWMP shall clearly describe the practices used to achieve final stabilization of all disturbed areas at the site, and any planned practices to control pollutants in stormwater discharges that will occur after construction operations have been completed at the site. b) Final stabilization practices for obtaining a vegetative cover should include, as appropriate: seed mix selection and application methods; soil preparation and amendments; soil stabilization practices (e.g. crimped straw, hydro mulch or rolled erosion control products); and appropriate sediment control BMPs as needed until final stabilization is achieved; etc.

Final stabilization and ground cover will include: asphalt, concrete, buildings (i.e. roof), lawn, and landscaped areas. Landscaped areas cover types include grass, gardens, shrubs, etc. Final stabilization will be considered achieved when the area has been stabilized to 70% of pre-disturbed levels (i.e., 70% of 50% ground cover).

Sediment that collects within the site's drainage system and water quality or quantity controls (BMPs) during this period is also considered unstabilized soil, and must be removed and the area stabilized before the site is considered finally stabilized. Procedures for accomplishing this include spreading the sediment over areas to be vegetated and placing the vegetation (e.g. sod) on top of the material, or spreading seed and mulch over the material.

c) Final stabilization is reached when all ground surface disturbing activities at the site have been completed, and uniform vegetative cover has been established within an individual plant density of at least 70 percent of pre-disturbance levels, or equivalent permanent, physical erosion reduction methods have been employed.

Agreed.

5. Inspection and Maintenance Procedures

a) The SWMP shall clearly describe the inspection and maintenance procedures implemented at the site to maintain all erosion and sediment control practices and other protective practices identified in the SWMP, in good and effective operation condition.

Minimum Inspection Schedule: The permittee shall, at a minimum, make a thorough inspection, in accordance with the requirements in I.D.6.b below, at least once every 14 calendar days. Also, post-storm event inspections must be conducted within 24 hours after the end of any precipitation or snowmelt event that causes surface erosion. Provided the timing is appropriate, the post-storm inspections may be used to fulfill the 14-day routine inspection requirement.

The following conditional modifications to this Minimum Inspection Schedule are allowed:

- Post-Storm Event Inspections at Temporarily Idle Sites If no construction activities will occur following a storm event, post-storm event inspections shall be conducted prior to re-commencing construction activities, but no later than 72 hours following the storm event. The occurrence of any such delayed inspection must be documented in the inspection record. Routine inspections still must be conducted at least every 14 calendar days.
- 2) Inspections at Completed Sites/Areas For sites or portions of sites that meet the following criteria, but final stabilization has not been achieved due to a vegetative cover that has not become established, the permittee shall make a thorough inspection of their stormwater management system at least once every month, and post-storm event inspections are not required. This reduced inspection schedule is only allowed if:

i) all construction activities that will result in surface ground disturbance are completed;

- *j) all activities required for final stabilization, in accordance with the SWMP, have been completed, with the exception of the application of seed that has not occurred due to seasonal conditions or the necessity for additional seed application to augment previous efforts; and*
- *k*) the SWMP has been amended to indicate those areas that will be inspected in accordance with the reduced schedule allowed for in this paragraph.
- 3) Winter Conditions Inspections Exclusion Inspections are not required at sites where construction activities are temporarily halted, snow cover exists over the entire site for an extended period, and melting conditions posing a risk of surface erosion do not exist. This exception is applicable only during the period where melting conditions do not exist, and applies to the routine 14-day and monthly inspections, as well as the post-storm event inspections. The following information must be documented in the inspection record for use of this exclusion: dates when snow cover occurred, date when construction activities ceased, and date melting conditions began. Inspections, as described above, are required at all other times.

Inspection Scope - The construction site perimeter, all disturbed areas, material and/or waste storage areas that are exposed to precipitation, discharge locations, and locations where vehicles access the site shall be inspected for evidence of, or the potential for, pollutants leaving the construction site boundaries, entering the stormwater drainage system, or discharging to state waters. All erosion and sediment control practices identified in the SWMP shall be evaluated to ensure that they are maintained and operating correctly.

Inspection Report Form:

While the inspection reports can take many different forms, it is important to note that they must provide adequate space or be filled out electronically (so text boxes can expand as needed) for an adequate inspection report, which must include, at a minimum:

i) The inspection date;

ii) Name(s) and title(s) of personnel making the inspection;

iii) Location(s) of discharges of sediment or other pollutants from the site;

iv) Location(s) of BMPs that need to be maintained;

v) Location(s) of BMPs that failed to operate as designed or proved inadequate for a particular location;

vi) Location(s) where additional BMPs are needed that were not in place at the time of inspection;
vii) Deviations from the minimum inspection schedule as provided in Part I.D.6.a above;
vii) Description of corrective action for items iii, iv, v, and vi, above, dates corrective action(s) taken, and
measures taken to prevent future violations, including requisite changes to the SWMP, as necessary; and
viii) After adequate corrective action(s) has been taken, or where a report does not identify any incidents
requiring corrective action, the report shall contain a signed statement indicating the site is in compliance with
the permit to the best of the signer's knowledge and belief.

The 5-2-1 Drainage Authority has developed an inspection form that meets the above requirements and is included in Appendix B of this report. The Inspector is to use this form as a template and modify it based on the current phase of construction and BMPs in the field.

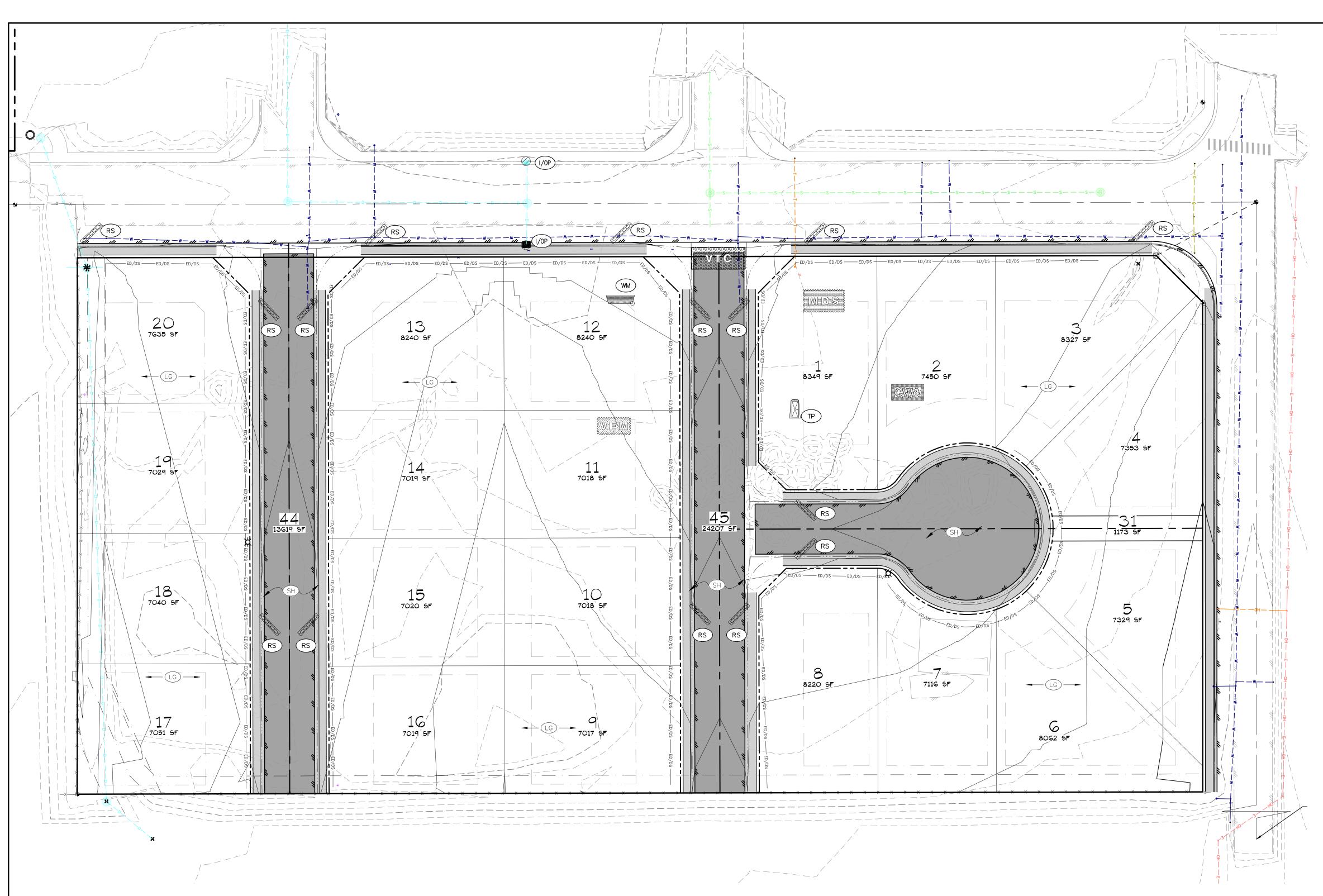
Required Actions Following Site Inspections – Where site inspections note the need for BMP maintenance activities, BMPs must be maintained in accordance with the SWMP and Part I.D.7 of the permit. Repair, replacement, or installation of new BMPs determined necessary during site inspections to address ineffective or inadequate BMPs must be conducted in accordance with Part I.D.8 of the permit. SWMP updates required as a result of deficiencies in the SWMP noted during site inspections shall be made in accordance with Part I.D.5.c of the permit.

BMP Maintenance

Maintenance triggers and procedures for maintaining each BMP on the project are included within the detail sheets for each BMP in Appendix C. The SWMP Administrator, CSWMP Inspector, and the Contractor's maintenance crew shall familiarize themselves with these details and the information provided.

If the CSWMP Inspector identifies BMP maintenance needs, they will submit a work order to the SWMP Administrator. After the contractor performs the work the SWMP Administrator will notify the Inspector, who will verify and document the date of completion on the inspection report.

a) Provide a description of the procedures for preventive maintenance.

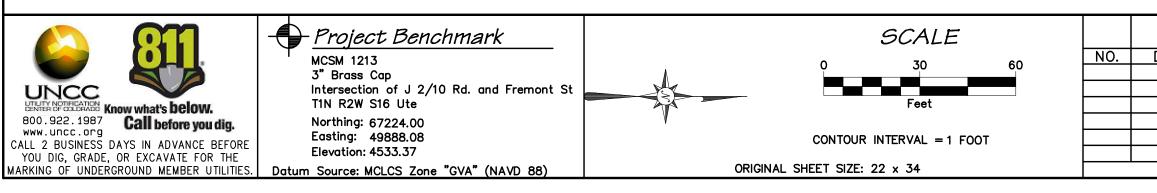

Preventive maintenance, which must be done according to the specifications of the maintenance details of each BMP included in the Structural and Non-Structural BMP section of this permit; note that these details include tolerances, or levels which sediment must not be allowed to accumulate past, which must be maintained.

CSWM Plan Enhancement

This plan is intended to be a "living document" and it is expected that it will be modified and updated throughout the project. The purpose of these changes is to continuously improve and tailor the plan to the project. These modifications/updates will be documented in writing within the copy of the original plan located on-site. If alternate BMPs are used details for said BMPs should be added to Appendix C. At all times the BMP Map on-site shall be "redlined" to represent the current practices being used. The SWMP Administrator will be the person responsible for documenting any changes and keeping the documents up to date and current with field activities.

Appendix A

BMP Map



DURING CONSTRUCTION (TEMPORARY MEASURES)

- 1. Material stockpiles shall be bermed around their perimeter to prevent runoff pollution.
- 2. Place wattles and/or berm down gradient of disturbed areas and stockpiles. 3. Compact soil and topsoil to the requirements as stated in the Geotechnical recommendations and finish grade to
- elevations shown on the site plan. Eliminate any low spots prior to final stabilization. 4. Contractor shall have a water truck made available to assist in controlling moisture content and dust and wind erosion.
- 5. Soils that will be stockpiled for more than thirty (30) days shall be seeded and mulched within fourteen (14) days of stockpile construction. No stockpiles shall be placed within one hundred (100) feet of a drainage way unless approved by the CSWMP Administrator.
- 6. The cleaning of concrete delivery truck chutes is restricted to approved concrete wash out locations on the job site. The discharge of water containing waste concrete to the storm system is prohibited. All concrete waste shall be properly cleaned up and disposed at an appropriate location.

AFTER CONSTRUCTION (PERMANENT MEASURES)

1. All areas disturbed by construction activities shall be paved, landscaped, or revegetated with a certified weed-free native seed mix appropriate for site soils and a vegetative cover of at least 70% of pre-construction cond mulch, and/or fertilizer should be applied to establish said

MAINTENANCE

- 1. All erosion control measures should be inspected to determine if repairs or sediment removal is necessary. The
- maximum time between inspections shall be 14 days. 2. Erosion control measures are also to be inspected within 48 hours of a storm that produces moderate runoff or

conditions. these areas shall be maintained until a ditions exists. if necessary, additional topsoil, seed, id vegetative cover.	 moderate snow melt. Repairs or modifications to the erosion control measures shall be completed immediately. Repairs and modifications shall be documented (what, why, & when). Silt and sediment shall be removed if there is a risk of sediment bypassing the erosion control feature. Specifically, sediment buildup shall not exceed 1/3 the height of any check dam or berm (including inlet protection), 1/2 the height of a wattle, or when sediment within a sediment basin gets within 6 inches of the outlet invert. When the temporary measures are to be removed, any silt and sediment deposits shall be removed and spread evenly in open areas and seeded as necessary. 			ACCEPTANCE BLOCK. The City of Fruita review constitutes general compliance with the City's Development Standards, su by the Professional of Record. Review by the City does not constitute approval of the plan desig for errors or omissions. Errors in the design or calculations remain the responsibility of the Profe Construction must commence within one year from the date of plan signature.	n. The City neither accepts nor assumes any liability	
					City Development Engineer	Date
	REVISIONS		A		Grand Valley Est	tates
DATE	DESCRIPTION	BY	BIIMINAET		Development Co,	LLC
			Tillar	744 Horizon Court, Suite 110 Grand Junction, CO 81506 www.rccwest.com Fax: 970.241.8841	Grand Valley Estates	Filing II
			REF	PROJECT #: 1129-004 DATE ISSUED: 2018.10.03 DRAWN BY: jmm HORIZ: 1"=30'	SWMP	C4
S:\PROJECTS\1129 Daly\004 Grand Valley Estates F2\Desig	n\DWG\03-Sheet Files\C4 SWMP.dwg [C4 SWMP] 10/4/2018 3:22:56 PM		→	CHECKED BY: jwm VERT: N/A		

BMP LEGEND

Installation details and maintenance guidelines for the above erosion control measures can be found in the written Construction Stormwater Management Plan for this project, CDOT standards, on Denver's Urban Drainage and Flood Control District website, and various manufacture's websites. Variations from these standards shall be approved by the CSWMP Administrator prior to installation. This list is not considered complete or absolute, additional methods can and should be added to this plan if required. This CSWMP should be kept current and modified appropriately by the CSWMP Administrator based on actual field conditions and the Contractor's means and methods.

	CWA	CONCRETE WASHOUT AREA		RR	RIPRAP
$\sum_{i=1}^{n}$	DP	DETENTION POND		RS	ROCK SOCK
ED/DS	ED/DS	EARTHEN DIKE/DRAINAGE SWALE	SH	SH	SURFACE HARDENING
\oslash	(/OP)	INLET/OUTLET PROTECTION		SEW	STABILIZED ENTRY WAY
	LG	LAND GRADING		TP	TOILETS (PORTABLE)
MDS	MDS	MATERIALS DELIVERY & STORAGE	×	VB	VEGETATIVE BUFFER
	OP	OUTLET PROTECTION		VTC	VEHICLE TRACKING CONTROL
PEV	PEV	PROTECT EXISTING VEGETATION		VEM	VEHICLE EQUIPMENT & MAINTENANCE
	RV	REVEGETATION		WM	WASTE MANAGEMENT

SITE DESCRIPTION

- 1. The project location is 1849 J 2/10 Road. In more legal terms, the project site is located in the West $\frac{1}{2}$ of the NW ¼ of the SW ¼ of the SE ¼ of Section 16, Township 1 North, Range 2 West of the Ute Meridian, Mesa County, Colorado.
- 2. Stormwater from this site will be discharged from the site through a series of existing ditches, culverts, and other
- drainage features. Drainage for this area generally flows from northeast to southwest.
 The receiving body of water is the Colorado River, approximately 2 miles south from the project site.
 Construction activity will consist of, in the following order: site marking, establishment of perimeter stormwater BMPs, site clearing, topsoil removal and stockpiling, installation of utilities, roads, and buildings, landscaping, and final seeding. intermediate stormwater BMPs will be installed and maintained throughout construction as required by the contractor's means and methods.
- 5. The primary contaminant of concern for this project is sediment. The proposed erosion controls have been selected and placed to mitigate the potential for sediment transport from the project area.
- 6. Existing vegetation on the project area consists of desert shrubs, grasses, various weeds and invasive species. Undisturbed portions of the project area are approximately 75% vegetated. 7. The 100—year runoff SCS Curve numbers for this project are 67 for undeveloped areas and 78 for developed
- areas.

GENERAL SWMP NOTES

- 1. CSWMP Administrator (Local Contact)
- Name: ___ Phone: Refer to the written construction stormwater management plan for bmp details and additional information.
- BMPs shown are schematic only. adjustments may be necessary to fit actual field conditions. The project area is equal to the estimated total area of disturbance which is approximately 4.3 acres.
- At all times during construction, erosion and sediment control shall be maintained by the contractor.
- 6. Erosion control measures shall be installed as the work (grading) progresses.
- Negative impacts to downstream areas (or receiving waters) caused by earthwork and/or construction to be monitored and corrected by the contractor. 8. The first BMP to be installed on the site shall be construction fence, markers, or other approved means of
- defining the limits of construction. 9. Natural vegetation shall be retained and protected wherever possible. exposure of soil to erosion by removal or disturbance of vegetation shall be limited to the area required for immediate construction operations.
- 10. All construction traffic must enter/exit the site through the CSWMP-approved access points.

EROSION CONTROL MEASURES (PERFORMANCE STANDARDS)

The general requirements for erosion control work shall be as follows:

- 1. Any grading shall be conducted in such a manner to effectively reduce accelerated soil erosion and resulting
- sedimentation. 2. All grading shall be designed, constructed, and completed to minimize the size and duration of exposed
- (unvegetated) area.
- 3. Sediment caused by accelerated soil erosion shall be captured and removed from runoff water prior to leaving the site.
- 4. Any temporary or permanent facility designed and constructed for the conveyance of water around, through, or from the graded area shall be designed to limit the water flow to a non-erosive velocity. 5. Temporary soil erosion control facilities shall be removed and areas graded and stabilized with permanent soil
- erosion control measures. 6. All BMPs will be in place prior to any major earthwork.

Appendix B

Inspection Report Template

	F		ITY	(5) Project Name			
744 HORIZON			NTS	(6) Stormwater Construction Permit No.			
GRAND JUNCT 970-241-4722				(7) Reason for Inspection :			
970-241-8841 F				Beguired Maximum 14 Colonder Day Inspection			
Email: <u>info@r</u>	<u>ccwest.con</u>	<u>n</u>		 Required Maximum 14 Calendar Day Inspection Required 30 Calendar Day Inspection for Complete 	ed Projects		
(1) Date of Inspe	ection			Required Storm Event Inspection Complaint:			
(2) Permittee's N	lame			□ Other:	□ Other:		
(3) Site Contact	Name (print)						
(4) Inspector Na	me (print)						
(8) CONSTRUC	TION SITE A	SSESSMENT					
	n site perimet reas containe	rer contained? rd?		 Estimate disturbed area at the time of the inspection Areas used for material and waste storage and fueli 			
(9) CSWMP M		Т					
	urrent CSWN	1P		Changes noted & dated on the plans?			
Contents of ✓Site Descriptio				✓Final Stabilization			
✓Site Map				✓ Other Controls			
 ✓ Description of ✓ Materials Hand 		construction activities		 ✓Inspection & Maintenance ✓Certification 			
		revention		Vertification			
REST MANAG							
DEST MANAG		CTICES (BMPS)					
(10) BMP Type	(11) Practice Req/Use d	(12) Reason	(13) Maintenance Required (Y/N)	(14) Deficiencies/Course of Action/Comments	(15) Date for Action to be Completed		
(10) BMP Туре	(11) Practice Req/Use	(12) Reason	Maintenance Required (Y/N)		Date for Action to be		
(10) BMP Type Earthen	(11) Practice Req/Use	(12) Reason Perimeter control	Maintenance Required (Y/N)	Deficiencies/Course of Action/Comments	Date for Action to be		
(10) BMP Туре	(11) Practice Req/Use	(12) Reason	Maintenance Required (Y/N)	Deficiencies/Course of Action/Comments	Date for Action to be		
(10) BMP Type Earthen Dike/Drainage	(11) Practice Req/Use	(12) Reason Perimeter control along edge of disturbance. Perimeter control	Maintenance Required (Y/N)	Deficiencies/Course of Action/Comments	Date for Action to be		
(10) BMP Type Earthen Dike/Drainage Swale	(11) Practice Req/Use	(12) Reason Perimeter control along edge of disturbance. Perimeter control along edge of	Maintenance Required (Y/N)	Deficiencies/Course of Action/Comments	Date for Action to be		
(10) BMP Type Earthen Dike/Drainage Swale Silt Fence	(11) Practice Req/Use	(12) Reason Perimeter control along edge of disturbance. Perimeter control along edge of disturbance.	Maintenance Required (Y/N)	Deficiencies/Course of Action/Comments	Date for Action to be		
(10) BMP Type Earthen Dike/Drainage Swale Silt Fence Sediment	(11) Practice Req/Use	(12) Reason Perimeter control along edge of disturbance. Perimeter control along edge of disturbance. Perimeter control	Maintenance Required (Y/N)	Deficiencies/Course of Action/Comments	Date for Action to be		
(10) BMP Type Earthen Dike/Drainage Swale Silt Fence Sediment Control Log	(11) Practice Req/Use	(12) Reason Perimeter control along edge of disturbance. Perimeter control along edge of disturbance.	Maintenance Required (Y/N)	Deficiencies/Course of Action/Comments	Date for Action to be		
(10) BMP Type Earthen Dike/Drainage Swale Silt Fence Sediment Control Log (i.e., Wattle)	(11) Practice Req/Use	(12) Reason Perimeter control along edge of disturbance. Perimeter control along edge of disturbance. Perimeter control along edge of disturbance.	Maintenance Required (Y/N)	Deficiencies/Course of Action/Comments	Date for Action to be		
(10) BMP Type Earthen Dike/Drainage Swale Silt Fence Sediment Control Log (i.e., Wattle) Rock Filter	(11) Practice Req/Use	(12) Reason Perimeter control along edge of disturbance. Perimeter control along edge of disturbance. Perimeter control along edge of disturbance. Used at stormwater	Maintenance Required (Y/N)	Deficiencies/Course of Action/Comments	Date for Action to be		
(10) BMP Type Earthen Dike/Drainage Swale Silt Fence Sediment Control Log (i.e., Wattle)	(11) Practice Req/Use	(12) Reason Perimeter control along edge of disturbance. Perimeter control along edge of disturbance. Perimeter control along edge of disturbance. Used at stormwater discharge points along the perimeter of the	Maintenance Required (Y/N)	Deficiencies/Course of Action/Comments	Date for Action to be		
(10) BMP Type Earthen Dike/Drainage Swale Silt Fence Sediment Control Log (i.e., Wattle) Rock Filter	(11) Practice Req/Use	(12) Reason Perimeter control along edge of disturbance. Perimeter control along edge of disturbance. Perimeter control along edge of disturbance. Used at stormwater discharge points along	Maintenance Required (Y/N)	Deficiencies/Course of Action/Comments	Date for Action to be		
(10) BMP Type Earthen Dike/Drainage Swale Silt Fence Sediment Control Log (i.e., Wattle) Rock Filter Berm Surface	(11) Practice Req/Use	(12) Reason Perimeter control along edge of disturbance. Perimeter control along edge of disturbance. Perimeter control along edge of disturbance. Used at stormwater discharge points along the perimeter of the project.	Maintenance Required (Y/N)	Deficiencies/Course of Action/Comments	Date for Action to be		
(10) BMP Type Earthen Dike/Drainage Swale Silt Fence Sediment Control Log (i.e., Wattle) Rock Filter Berm	(11) Practice Req/Use	(12) Reason Perimeter control along edge of disturbance. Perimeter control along edge of disturbance. Perimeter control along edge of disturbance. Used at stormwater discharge points along the perimeter of the project.	Maintenance Required (Y/N)	Deficiencies/Course of Action/Comments	Date for Action to be		

	,
Inlet 3 Inlets along	
Protection Thundercloud Drive	
Rock Socks Located in gutter of	
finished streets.	
Pipe Outlet Pipe outlet on east end of	
Protection project.	
Vehicle Project Entrance/Exit	
Tracking	
Control	
Stabilized Lot Construction	
Entry-Way	
Concrete Designated onsite area for	
Washout concrete waste	
Good Portable Toilets,	
Housekeeping Dumpsters, trash, etc.	
Street Monitor and perform as	
Sweeping needed.	
Stockpile Topsoil, excess fill,	
Management foundation excavations,	
landscape materials, etc.	
Material Storage area for	
Storage Area building/construction	
supplies	
Other:	
Other:	
Other:	
Comments:	

(16) INSPECTIONS AND MAINTENANCE PROGRAM	
Inspection occurring at least every 14 calendar days.	
Inspections occurring after storm events that result in runoff.	
Inspections occurring at least every 30 calendar days since project	
completion.	
Inspection reports retained at the construction project site.	
Corrective measures completed within 7 calendar days of inspection.	

CERTIFICATION

I certify this Stormwater Construction Permit Field Inspection Report is complete and accurate.				
Inspector Signature	Date			

Appendix C

Best Management Practices (BMP) Details

Description

Surface roughening is an erosion control practice that involves tracking, scarifying, imprinting, or tilling a disturbed area to provide temporary stabilization of disturbed areas. Surface roughening creates variations in the soil surface that help to minimize wind and water erosion. Depending on the technique used, surface roughening may also help establish conditions favorable to establishment of vegetation.

Appropriate Uses

Surface roughening can be used to provide temporary stabilization of disturbed areas, such as when

Photograph SR-1. Surface roughening via imprinting for temporary stabilization.

revegetation cannot be immediately established due to seasonal planting limitations. Surface roughening is not a stand-alone BMP, and should be used in conjunction with other erosion and sediment controls.

Surface roughening is often implemented in conjunction with grading and is typically performed using heavy construction equipment to track the surface. Be aware that tracking with heavy equipment will also compact soils, which is not desirable in areas that will be revegetated. Scarifying, tilling, or ripping are better surface roughening techniques in locations where revegetation is planned. Roughening is not effective in very sandy soils and cannot be effectively performed in rocky soil.

Design and Installation

Typical design details for surfacing roughening on steep and mild slopes are provided in Details SR-1 and SR-2, respectively.

Surface roughening should be performed either after final grading or to temporarily stabilize an area during active construction that may be inactive for a short time period. Surface roughening should create depressions 2 to 6 inches deep and approximately 6 inches apart. The surface of exposed soil can be roughened by a number of techniques and equipment. Horizontal grooves (running parallel to the contours of the land) can be made using tracks from equipment treads, stair-step grading, ripping, or tilling.

Fill slopes can be constructed with a roughened surface. Cut slopes that have been smooth graded can be roughened as a subsequent operation. Roughening should follow along the contours of the slope. The

tracks left by truck mounted equipment working perpendicular to the contour can leave acceptable horizontal depressions; however, the equipment will also compact the soil.

Surface Roughening				
Functions				
Erosion Control	Yes			
Sediment Control	No			
Site/Material Management No				

Maintenance and Removal

Care should be taken not to drive vehicles or equipment over areas that have been surface roughened. Tire tracks will smooth the roughened surface and may cause runoff to collect into rills and gullies.

Because surface roughening is only a temporary control, additional treatments may be necessary to maintain the soil surface in a roughened condition.

Areas should be inspected for signs of erosion. Surface roughening is a temporary measure, and will not provide long-term erosion control.

SURFACE ROUGHENING INSTALLATION NOTES

1. SEE PLAN VIEW FOR: -LOCATION(S) OF SURFACE ROUGHENING.

2. SURFACE ROUGHENING SHALL BE PROVIDED PROMPTLY AFTER COMPLETION OF FINISHED GRADING (FOR AREAS NOT RECEIVING TOPSOIL) OR PRIOR TO TOPSOIL PLACEMENT OR ANY FORECASTED RAIN EVENT.

3. AREAS WHERE BUILDING FOUNDATIONS, PAVEMENT, OR SOD WILL BE PLACED WITHOUT DELAY IN THE CONSTRUCTION SEQUENCE, SURFACE ROUGHENING IS NOT REQUIRED.

4. DISTURBED SURFACES SHALL BE ROUGHENED USING RIPPING OR TILLING EQUIPMENT ON THE CONTOUR OR TRACKING UP AND DOWN A SLOPE USING EQUIPMENT TREADS.

5. A FARMING DISK SHALL NOT BE USED FOR SURFACE ROUGHENING.

SURFACE ROUGHENING MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACE UPON DISCOVERY OF THE FAILURE.

4. VEHICLES AND EQUIPMENT SHALL NOT BE DRIVEN OVER AREAS THAT HAVE BEEN SURFACE ROUGHENED.

5. IN NON-TURF GRASS FINISHED AREAS, SEEDING AND MULCHING SHALL TAKE PLACE DIRECTLY OVER SURFACE ROUGHENED AREAS WITHOUT FIRST SMOOTHING OUT THE SURFACE.

6. IN AREAS NOT SEEDED AND MULCHED AFTER SURFACE ROUGHENING, SURFACES SHALL BE RE-ROUGHENED AS NECESSARY TO MAINTAIN GROOVE DEPTH AND SMOOTH OVER RILL EROSION.

(DETAILS ADAPTED FROM TOWN OF PARKER, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

Description

Temporary seeding can be used to stabilize disturbed areas that will be inactive for an extended period. Permanent seeding should be used to stabilize areas at final grade that will not be otherwise stabilized. Effective seeding includes preparation of a seedbed, selection of an appropriate seed mixture, proper planting techniques, and protection of the seeded area with mulch, geotextiles, or other appropriate measures.

Appropriate Uses

When the soil surface is disturbed and will remain inactive for an extended period (typically 30 days or longer),

Photograph TS/PS -1. Equipment used to drill seed. Photo courtesy of Douglas County.

proactive stabilization measures should be implemented. If the inactive period is short-lived (on the order of two weeks), techniques such as surface roughening may be appropriate. For longer periods of inactivity, temporary seeding and mulching can provide effective erosion control. Permanent seeding should be used on finished areas that have not been otherwise stabilized.

Typically, local governments have their own seed mixes and timelines for seeding. Check jurisdictional requirements for seeding and temporary stabilization.

Design and Installation

Effective seeding requires proper seedbed preparation, selection of an appropriate seed mixture, use of appropriate seeding equipment to ensure proper coverage and density, and protection with mulch or fabric until plants are established.

The USDCM Volume 2 *Revegetation* Chapter contains detailed seed mix, soil preparations, and seeding and mulching recommendations that may be referenced to supplement this Fact Sheet.

Drill seeding is the preferred seeding method. Hydroseeding is not recommended except in areas where steep slopes prevent use of drill seeding equipment, and even in these instances it is preferable to hand seed and mulch. Some jurisdictions do not allow hydroseeding or hydromulching.

Seedbed Preparation

Prior to seeding, ensure that areas to be revegetated have soil conditions capable of supporting vegetation. Overlot grading can result in loss of topsoil, resulting in poor quality subsoils at the ground surface that have low nutrient value, little organic matter content, few soil microorganisms, rooting restrictions, and conditions less conducive to infiltration of precipitation. As a result, it is typically necessary to provide stockpiled topsoil, compost, or other

Temporary and Permanent Seeding				
Functions				
Erosion Control	Yes			
Sediment Control	No			
Site/Material Management No				

EC-2 Temporary and Permanent Seeding (TS/PS)

soil amendments and rototill them into the soil to a depth of 6 inches or more.

Topsoil should be salvaged during grading operations for use and spread on areas to be revegetated later. Topsoil should be viewed as an important resource to be utilized for vegetation establishment, due to its water-holding capacity, structure, texture, organic matter content, biological activity, and nutrient content. The rooting depth of most native grasses in the semi-arid Denver metropolitan area is 6 to 18 inches. At a minimum, the upper 6 inches of topsoil should be stripped, stockpiled, and ultimately respread across areas that will be revegetated.

Where topsoil is not available, subsoils should be amended to provide an appropriate plant-growth medium. Organic matter, such as well digested compost, can be added to improve soil characteristics conducive to plant growth. Other treatments can be used to adjust soil pH conditions when needed. Soil testing, which is typically inexpensive, should be completed to determine and optimize the types and amounts of amendments that are required.

If the disturbed ground surface is compacted, rip or rototill the surface prior to placing topsoil. If adding compost to the existing soil surface, rototilling is necessary. Surface roughening will assist in placement of a stable topsoil layer on steeper slopes, and allow infiltration and root penetration to greater depth.

Prior to seeding, the soil surface should be rough and the seedbed should be firm, but neither too loose nor compacted. The upper layer of soil should be in a condition suitable for seeding at the proper depth and conducive to plant growth. Seed-to-soil contact is the key to good germination.

Seed Mix for Temporary Vegetation

To provide temporary vegetative cover on disturbed areas which will not be paved, built upon, or fully landscaped or worked for an extended period (typically 30 days or more), plant an annual grass appropriate for the time of planting and mulch the planted areas. Annual grasses suitable for the Denver metropolitan area are listed in Table TS/PS-1. These are to be considered only as general recommendations when specific design guidance for a particular site is not available. Local governments typically specify seed mixes appropriate for their jurisdiction.

Seed Mix for Permanent Revegetation

To provide vegetative cover on disturbed areas that have reached final grade, a perennial grass mix should be established. Permanent seeding should be performed promptly (typically within 14 days) after reaching final grade. Each site will have different characteristics and a landscape professional or the local jurisdiction should be contacted to determine the most suitable seed mix for a specific site. In lieu of a specific recommendation, one of the perennial grass mixes appropriate for site conditions and growth season listed in Table TS/PS-2 can be used. The pure live seed (PLS) rates of application recommended in these tables are considered to be absolute minimum rates for seed applied using proper drill-seeding equipment.

If desired for wildlife habitat or landscape diversity, shrubs such as rubber rabbitbrush (*Chrysothamnus nauseosus*), fourwing saltbush (*Atriplex canescens*) and skunkbrush sumac (*Rhus trilobata*) could be added to the upland seedmixes at 0.25, 0.5 and 1 pound PLS/acre, respectively. In riparian zones, planting root stock of such species as American plum (*Prunus americana*), woods rose (*Rosa woodsii*), plains cottonwood (*Populus sargentii*), and willow (*Populus spp*.) may be considered. On non-topsoiled upland sites, a legume such as Ladak alfalfa at 1 pound PLS/acre can be included as a source of nitrogen for perennial grasses.

Seeding dates for the highest success probability of perennial species along the Front Range are generally in the spring from April through early May and in the fall after the first of September until the ground freezes. If the area is irrigated, seeding may occur in summer months, as well. See Table TS/PS-3 for appropriate seeding dates.

Species ^a (Common name)	Growth Season ^b	Pounds of Pure Live Seed (PLS)/acre ^c	Planting Depth (inches)
1. Oats	Cool	35 - 50	1 - 2
2. Spring wheat	Cool	25 - 35	1 - 2
3. Spring barley	Cool	25 - 35	1 - 2
4. Annual ryegrass	Cool	10 - 15	1/2
5. Millet	Warm	3 - 15	1/2 - 3/4
6. Sudangrass	Warm	5–10	1/2 - 3/4
7. Sorghum	Warm	5–10	1/2 - 3/4
8. Winter wheat	Cool	20–35	1 - 2
9. Winter barley	Cool	20–35	1 - 2
10. Winter rye	Cool	20–35	1 - 2
11. Triticale	Cool	25–40	1 - 2

Table TS/PS-1	. Minimum Drill Seeding	Rates for Various	Temporary Annual Grasses
---------------	-------------------------	--------------------------	--------------------------

⁴ Successful seeding of annual grass resulting in adequate plant growth will usually produce enough dead-plant residue to provide protection from wind and water erosion for an additional year. This assumes that the cover is not disturbed or mowed closer than 8 inches.

Hydraulic seeding may be substituted for drilling only where slopes are steeper than 3:1 or where access limitations exist. When hydraulic seeding is used, hydraulic mulching should be applied as a separate operation, when practical, to prevent the seeds from being encapsulated in the mulch.

^b See Table TS/PS-3 for seeding dates. Irrigation, if consistently applied, may extend the use of cool season species during the summer months.

^c Seeding rates should be doubled if seed is broadcast, or increased by 50 percent if done using a Brillion Drill or by hydraulic seeding.

Common ^a Name	Botanical Name	Growth Season ^b	Growth Form	Seeds/ Pound	Pounds of PLS/acre
Alakali Soil Seed Mix					
Alkali sacaton	Sporobolus airoides	Cool	Bunch	1,750,000	0.25
Basin wildrye	Elymus cinereus	Cool	Bunch	165,000	2.5
Sodar streambank wheatgrass	Agropyron riparium 'Sodar'	Cool	Sod	170,000	2.5
Jose tall wheatgrass	Agropyron elongatum 'Jose'	Cool	Bunch	79,000	7.0
Arriba western wheatgrass	Agropyron smithii 'Arriba'	Cool	Sod	110,000	5.5
Total					17.75
Fertile Loamy Soil Seed Mix			•	1	
Ephriam crested wheatgrass	Agropyron cristatum 'Ephriam'	Cool	Sod	175,000	2.0
Dural hard fescue	Festuca ovina 'duriuscula'	Cool	Bunch	565,000	1.0
Lincoln smooth brome	Bromus inermis leyss 'Lincoln'	Cool	Sod	130,000	3.0
Sodar streambank wheatgrass	Agropyron riparium 'Sodar'	Cool	Sod	170,000	2.5
Arriba western wheatgrass	Agropyron smithii 'Arriba'	Cool	Sod	110,000	7.0
Total					15.5
High Water Table Soil Seed Mix	K				
Meadow foxtail	Alopecurus pratensis	Cool	Sod	900,000	0.5
Redtop	Agrostis alba	Warm	Open sod	5,000,000	0.25
Reed canarygrass	Phalaris arundinacea	Cool	Sod	68,000	0.5
Lincoln smooth brome	Bromus inermis leyss 'Lincoln'	Cool	Sod	130,000	3.0
Pathfinder switchgrass	Panicum virgatum 'Pathfinder'	Warm	Sod	389,000	1.0
Alkar tall wheatgrass	Agropyron elongatum 'Alkar'	Cool	Bunch	79,000	5.5
Total					10.75
Transition Turf Seed Mix ^c					
Ruebens Canadian bluegrass	Poa compressa 'Ruebens'	Cool	Sod	2,500,000	0.5
Dural hard fescue	Festuca ovina 'duriuscula'	Cool	Bunch	565,000	1.0
Citation perennial ryegrass	Lolium perenne 'Citation'	Cool	Sod	247,000	3.0
Lincoln smooth brome	Bromus inermis leyss 'Lincoln'	Cool	Sod	130,000	3.0
Total					7.5

Common Name	Botanical Name	Growth Season ^b	Growth Form	Seeds/ Pound	Pounds of PLS/acre
Sandy Soil Seed Mix					
Blue grama	Bouteloua gracilis	Warm	Sod-forming bunchgrass	825,000	0.5
Camper little bluestem	Schizachyrium scoparium 'Camper'	Warm	Bunch	240,000	1.0
Prairie sandreed	Calamovilfa longifolia	Warm	Open sod	274,000	1.0
Sand dropseed	Sporobolus cryptandrus	Cool	Bunch	5,298,000	0.25
Vaughn sideoats grama	Bouteloua curtipendula 'Vaughn'	Warm	Sod	191,000	2.0
Arriba western wheatgrass	Agropyron smithii 'Arriba'	Cool	Sod	110,000	5.5
Total					10.25
Heavy Clay, Rocky Foothill Seed	d Mix				
Ephriam crested wheatgrass ^d	Agropyron cristatum 'Ephriam'	Cool	Sod	175,000	1.5
Oahe Intermediate wheatgrass	Agropyron intermedium 'Oahe'	Cool	Sod	115,000	5.5
Vaughn sideoats grama ^e	Bouteloua curtipendula 'Vaughn'	Warm	Sod	191,000	2.0
Lincoln smooth brome	Bromus inermis leyss 'Lincoln'	Cool	Sod	130,000	3.0
Arriba western wheatgrass	Agropyron smithii 'Arriba'	Cool	Sod	110,000	5.5
Total					17.5

Table TS/PS-2. Minimum Drill Seeding Rates for Perennial Grasses (cont.)

All of the above seeding mixes and rates are based on drill seeding followed by crimped straw mulch. These rates should be doubled if seed is broadcast and should be increased by 50 percent if the seeding is done using a Brillion Drill or is applied through hydraulic seeding. Hydraulic seeding may be substituted for drilling only where slopes are steeper than 3:1. If hydraulic seeding is used, hydraulic mulching should be done as a separate operation.

^b See Table TS/PS-3 for seeding dates.

^c If site is to be irrigated, the transition turf seed rates should be doubled.

^d Crested wheatgrass should not be used on slopes steeper than 6H to 1V.

^e Can substitute 0.5 lbs PLS of blue grama for the 2.0 lbs PLS of Vaughn sideoats grama.

	(Numbers in	Annual Grasses (Numbers in table reference species in Table TS/PS-1)		Perennial Grasses	
Seeding Dates	Warm	Cool	Warm	Cool	
January 1–March 15			✓	\checkmark	
March 16–April 30	4	1,2,3	✓	\checkmark	
May 1–May 15	4		✓		
May 16–June 30	4,5,6,7				
July 1–July 15	5,6,7				
July 16–August 31					
September 1–September 30		8,9,10,11			
October 1–December 31			✓	\checkmark	

Table TS/PS-3.	Seeding Dates for Annual and Perennial Grasses
----------------	--

Mulch

Cover seeded areas with mulch or an appropriate rolled erosion control product to promote establishment of vegetation. Anchor mulch by crimping, netting or use of a non-toxic tackifier. See the Mulching BMP Fact Sheet for additional guidance.

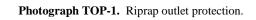
Maintenance and Removal

Monitor and observe seeded areas to identify areas of poor growth or areas that fail to germinate. Reseed and mulch these areas, as needed.

An area that has been permanently seeded should have a good stand of vegetation within one growing season if irrigated and within three growing seasons without irrigation in Colorado. Reseed portions of the site that fail to germinate or remain bare after the first growing season.

Seeded areas may require irrigation, particularly during extended dry periods. Targeted weed control may also be necessary.

Protect seeded areas from construction equipment and vehicle access.


Description

Outlet protection helps to reduce erosion immediately downstream of a pipe, culvert, slope drain, rundown or other conveyance with concentrated, highvelocity flows. Typical outlet protection consists of riprap or rock aprons at the conveyance outlet.

Appropriate Uses

Outlet protection should be used when a conveyance discharges onto a disturbed

area where there is potential for accelerated erosion due to concentrated flow. Outlet

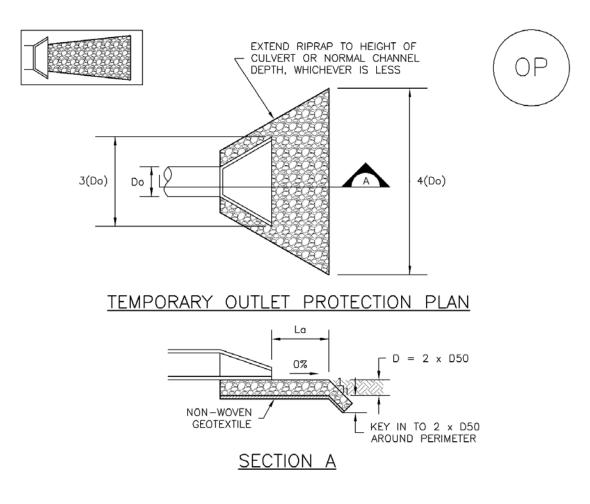
protection should be provided where the velocity at the culvert outlet exceeds the maximum permissible velocity of the material in the receiving channel.

Note: This Fact Sheet and detail are for temporary outlet protection, outlets that are intended to be used for less than 2 years. For permanent, long-term outlet protection, see the *Major Drainage* chapter of Volume 1.

Design and Installation

Design outlet protection to handle runoff from the largest drainage area that may be contributing runoff during construction (the drainage area may change as a result of grading). Key in rock, around the entire perimeter of the apron, to a minimum depth of 6 inches for stability. Extend riprap to the height of the culvert or the normal flow depth of the downstream channel, whichever is less. Additional erosion control measures such as vegetative lining, turf reinforcement mat and/or other channel lining methods may be required downstream of the outlet protection if the channel is susceptible to erosion. See Design Detail OP-1 for additional information.

Maintenance and Removal


Inspect apron for damage and displaced rocks. If rocks are missing or significantly displaced, repair or replace as necessary. If rocks are continuously missing or displaced, consider increasing the size of the riprap or deeper keying of the perimeter.

Remove sediment accumulated at the outlet before the outlet protection becomes buried and ineffective. When sediment accumulation is noted, check that upgradient BMPs, including inlet protection, are in effective operating condition.

Outlet protection may be removed once the pipe is no longer draining an upstream area, or once the downstream area has been sufficiently stabilized. If the drainage pipe is permanent, outlet protection can be left in place; however, permanent outlet protection should be designed and constructed in accordance with the requirements of the *Major Drainage* chapter of Volume 2.

Outlet Protection			
Functions			
Erosion Control	Yes		
Sediment Control	Moderate		
Site/Material Management	No		

	TABLE OP-1. TEMPORARY OUTLET PROTECTION SIZING TABLE				
	PIPE DIAMETER, Do (INCHES)	DISCHARGE, Q (CFS)	APRON LENGTH, La (FT)	RIPRAP D50 DIAMETER MIN (INCHES)	
	8	2.5 5	5 10	4 6	
	12	5 10	10 13	4 6	
	18	10 20 30 40	10 16 23 26	6 9 12 16	
	24	30 40 50 60	16 26 26 30	9 9 12 16	
<u> 0P-</u>	1. TEMP	ORARY	OUTLET	PROTEC	TION

TEMPORARY OUTLET PROTECTION INSTALLATION NOTES

1. SEE PLAN VIEW FOR -LOCATION OF OUTLET PROTECTION. -DIMENSIONS OF OUTLET PROTECTION.

2. DETAIL IS INTENDED FOR PIPES WITH SLOPE \leq 10%. ADDITIONAL EVALUATION OF RIPRAP SIZING AND OUTLET PROTECTION DIMENSIONS REQUIRED FOR STEEPER SLOPES.

3. TEMPORARY OUTLET PROTECTION INFORMATION IS FOR OUTLETS INTENDED TO BE UTILIZED LESS THAN 2 YEARS.

TEMPORARY OUTLET PROTECTION INSPECTION AND MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs have failed, Repair or Replacement should be initiated upon discovery of the failure.

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

(DETAILS ADAPTED FROM AURORA, COLORADO AND PREVIOUS VERSION OF VOLUME 3, NOT AVAILABLE IN AUTOCAD)

Description

Earth dikes and drainage swales are temporary storm conveyance channels constructed either to divert runoff around slopes or to convey runoff to additional sediment control BMPs prior to discharge of runoff from a site. Drainage swales may be lined or unlined, but if an unlined swale is used, it must be well compacted and capable of resisting erosive velocities.

Appropriate Uses

Earth dikes and drainage swales are typically used to control the flow path of runoff at a construction site by diverting runoff around areas prone to erosion, such as steep slopes. Earth dikes and drainage swales may also be constructed as temporary conveyance features. This will direct runoff to additional sediment control treatment BMPs, such as sediment traps or basins.

Photograph ED/DS-1. Example of an earth dike used to divert flows at a construction site. Photo courtesy of CDOT.

Design and Installation

When earth dikes are used to divert water for slope protection, the earth dike typically consists of a horizontal ridge of soil placed perpendicular to the slope and angled slightly to provide drainage along the contour. The dike is used in conjunction with a swale or a small channel upslope of the berm to convey the diverted water. Temporary diversion dikes can be constructed by excavation of a V-shaped trench or ditch and placement of the fill on the downslope side of the cut. There are two types of placement for temporary slope diversion dikes:

- A dike located at the top of a slope to divert upland runoff away from the disturbed area and convey it in a temporary or permanent channel.
- A diversion dike located at the base or mid-slope of a disturbed area to intercept runoff and reduce the effective slope length.

Depending on the project, either an earth dike or drainage swale may be more appropriate. If there is a

need for cut on the project, then an excavated drainage swale may be better suited. When the project is primarily fill, then a conveyance constructed using a berm may be the better option.

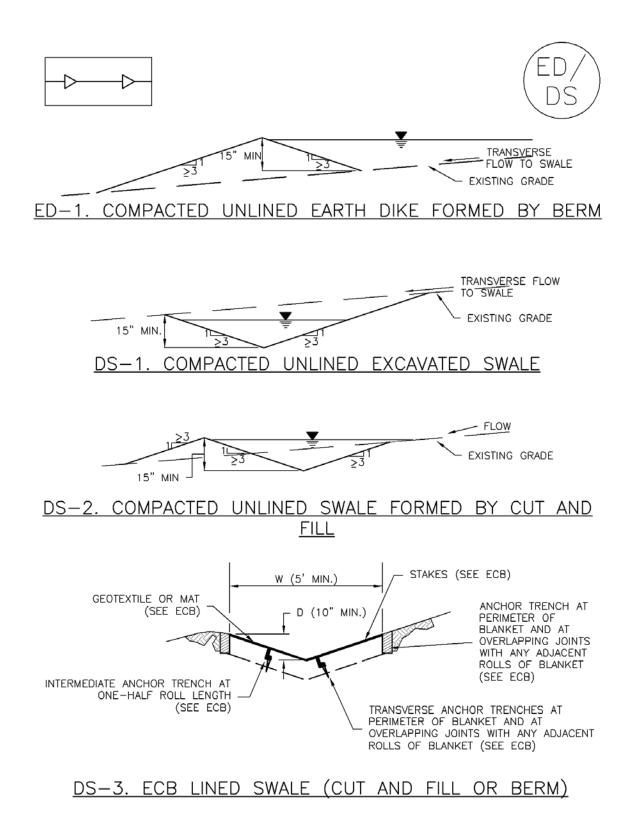
All dikes or swales receiving runoff from a disturbed area should direct stormwater to a sediment control BMP such as a sediment trap or basin.

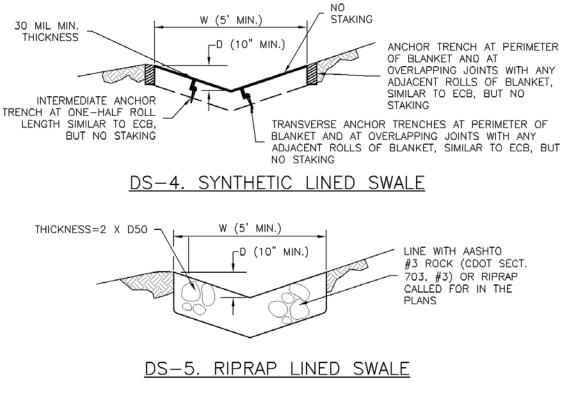
Earth Dikes and Drainage Swales				
Functions				
Erosion Control	Yes			
Sediment Control	Moderate			
Site/Material Management	No			

EC-10 Earth Dikes and Drainage Swales (ED/DS)

Unlined dikes or swales should only be used for intercepting sheet flow runoff and are not intended for diversion of concentrated flows.

Details with notes are provided for several design variations, including:


- ED-1. Unlined Earth Dike formed by Berm
- DS-1. Unlined Excavated Swale
- DS-2. Unlined Swale Formed by Cut and Fill
- DS-3. ECB-lined Swale
- DS-4. Synthetic-lined Swale
- DS-5. Riprap-lined Swale


The details also include guidance on permissible velocities for cohesive channels if unlined approaches will be used.

Maintenance and Removal

Inspect earth dikes for stability, compaction, and signs of erosion and repair. Inspect side slopes for erosion and damage to erosion control fabric. Stabilize slopes and repair fabric as necessary. If there is reoccurring extensive damage, consider installing rock check dams or lining the channel with riprap.

If drainage swales are not permanent, remove dikes and fill channels when the upstream area is stabilized. Stabilize the fill or disturbed area immediately following removal by revegetation or other permanent stabilization method approved by the local jurisdiction.

EARTH DIKE AND DRAINAGE SWALE INSTALLATION NOTES

- 1. SEE SITE PLAN FOR:
 - LOCATION OF DIVERSION SWALE
 - TYPE OF SWALE (UNLINED, COMPACTED AND/OR LINED).
 - LENGTH OF EACH SWALE.
 - DEPTH, D, AND WIDTH, W DIMENSIONS.
 - FOR ECB/TRM LINED DITCH, SEE ECB DETAIL.
 - FOR RIPRAP LINED DITCH, SIZE OF RIPRAP, D50.

2. SEE DRAINAGE PLANS FOR DETAILS OF PERMANENT CONVEYANCE FACILITIES AND/OR DIVERSION SWALES EXCEEDING 2-YEAR FLOW RATE OR 10 CFS.

3. EARTH DIKES AND SWALES INDICATED ON SWMP PLAN SHALL BE INSTALLED PRIOR TO LAND-DISTURBING ACTIVITIES IN PROXIMITY.

4. EMBANKMENT IS TO BE COMPACTED TO 90% OF MAXIMUM DENSITY AND WITHIN 2% OF OPTIMUM MOISTURE CONTENT ACCORDING TO ASTM D698.

5. SWALES ARE TO DRAIN TO A SEDIMENT CONTROL BMP.

6. FOR LINED DITCHES, INSTALLATION OF ECB/TRM SHALL CONFORM TO THE REQUIREMENTS OF THE ECB DETAIL.

7. WHEN CONSTRUCTION TRAFFIC MUST CROSS A DIVERSION SWALE, INSTALL A TEMPORARY CULVERT WITH A MINIMUM DIAMETER OF 12 INCHES.

EARTH DIKE AND DRAINAGE SWALE MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. SWALES SHALL REMAIN IN PLACE UNTIL THE END OF CONSTRUCTION; IF APPROVED BY LOCAL JURISDICTION, SWALES MAY BE LEFT IN PLACE.

5. WHEN A SWALE IS REMOVED, THE DISTURBED AREA SHALL BE COVERED WITH TOPSOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED IN A MANNER APPROVED BY LOCAL JURISDICTION.

(DETAIL ADAPTED FROM DOUGLAS COUNTY, COLORADO AND THE CITY OF COLORADO SPRINGS, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

Check dams are temporary grade control structures placed in drainage channels to limit the erosivity of stormwater by reducing flow velocity. Check dams are typically constructed from rock, gravel bags, sand bags, or sometimes, proprietary devices. Reinforced check dams are typically constructed from rock and wire gabion. Although the primary function of check dams is to reduce the velocity of concentrated flows, a secondary benefit is sediment trapping upstream of the structure.

Photograph CD-1. Rock check dams in a roadside ditch. Photo courtesy of WWE.

Appropriate Uses

Use as a grade control for temporary drainage ditches or swales until final soil stabilization measures are established upstream and downstream. Check dams can be used on mild or moderately steep slopes. Check dams may be used under the following conditions:

- As temporary grade control facilities along waterways until final stabilization is established.
- Along permanent swales that need protection prior to installation of a non-erodible lining.
- Along temporary channels, ditches or swales that need protection where construction of a nonerodible lining is not practicable.
- Reinforced check dams should be used in areas subject to high flow velocities.

Design and Installation

Place check dams at regularly spaced intervals along the drainage swale or ditch. Check dams heights should allow for pools to develop upstream of each check dam, extending to the downstream toe of the check dam immediately upstream.

When rock is used for the check dam, place rock mechanically or by hand. Do not dump rocks into the drainage channel. Where multiple check dams are used, the top of the lower dam should be at the same elevation as the toe of the upper dam.

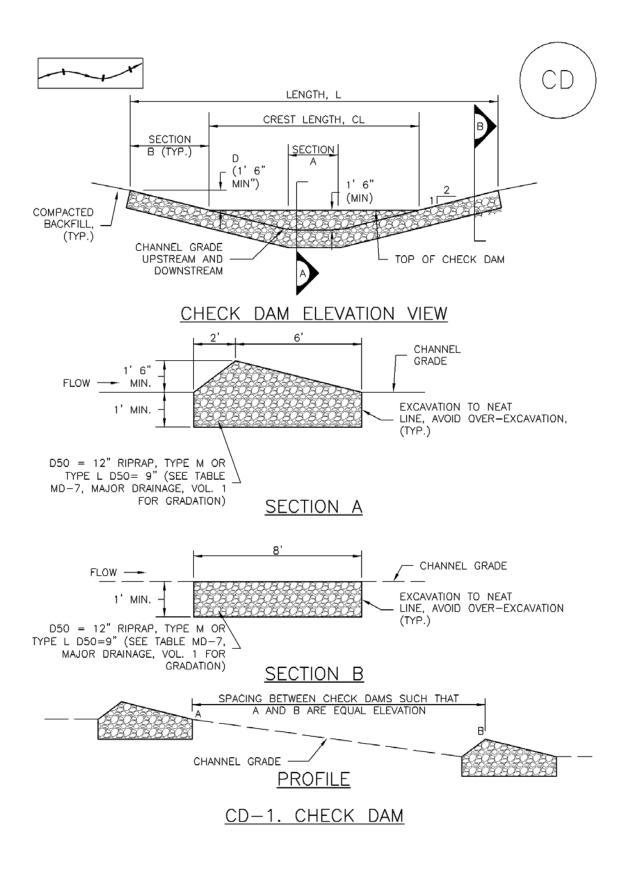
When reinforced check dams are used, install erosion control fabric under and around the check dam to

prevent erosion on the upstream and downstream sides. Each section of the dam should be keyed in to reduce the potential for washout or undermining. A rock apron upstream and downstream of the dam may be necessary to further control erosion.

Check Dams	
Functions	
Erosion Control	Yes
Sediment Control	Moderate
Site/Material Management	No

Design details with notes are provided for the following types of check dams:

- Rock Check Dams (CD-1)
- Reinforced Check Dams (CD-2)


Sediment control logs may also be used as check dams; however, silt fence is not appropriate for use as a check dam. Many jurisdictions also prohibit or discourage use of straw bales for this purpose.

Maintenance and Removal

Replace missing rocks causing voids in the check dam. If gravel bags or sandbags are used, replace or repair torn or displaced bags.

Remove accumulated sediment, as needed to maintain BMP effectiveness, typically before the sediment depth upstream of the check dam is within ½ of the crest height. Remove accumulated sediment prior to mulching, seeding, or chemical soil stabilization. Removed sediment can be incorporated into the earthwork with approval from the Project Engineer, or disposed of at an alternate location in accordance with the standard specifications.

Check dams constructed in permanent swales should be removed when perennial grasses have become established, or immediately prior to installation of a non-erodible lining. All of the rock and accumulated sediment should be removed, and the area seeded and mulched, or otherwise stabilized.

CHECK DAM INSTALLATION NOTES

1. SEE PLAN VIEW FOR:

- -LOCATION OF CHECK DAMS.
- -CHECK DAM TYPE (CHECK DAM OR REINFORCED CHECK DAM).
- -LENGTH (L), CREST LENGTH (CL), AND DEPTH (D).

2. CHECK DAMS INDICATED ON INITIAL SWMP SHALL BE INSTALLED AFTER CONSTRUCTION FENCE, BUT PRIOR TO ANY UPSTREAM LAND DISTURBING ACTIVITIES.

3. RIPRAP UTILIZED FOR CHECK DAMS SHOULD BE OF APPROPRIATE SIZE FOR THE APPLICATION. TYPICAL TYPES OF RIPRAP USED FOR CHECK DAMS ARE TYPE M (D50 12") OR TYPE L (D50 9").

4. RIPRAP PAD SHALL BE TRENCHED INTO THE GROUND A MINIMUM OF 1'.

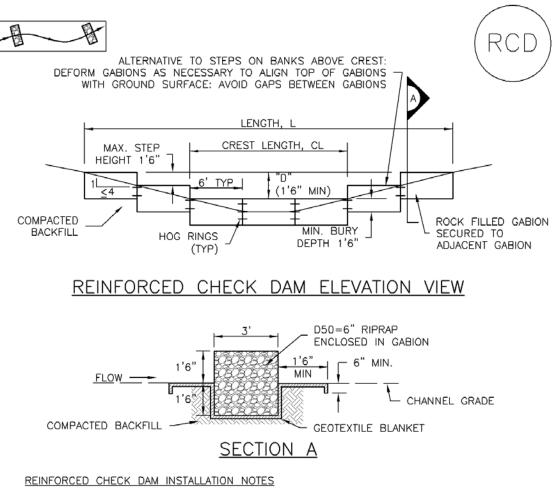
5. THE ENDS OF THE CHECK DAM SHALL BE A MINIMUM OF 1' 6" HIGHER THAN THE CENTER OF THE CHECK DAM.

CHECK DAM MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.


4. SEDIMENT ACCUMULATED UPSTREAM OF THE CHECK DAMS SHALL BE REMOVED WHEN THE SEDIMENT DEPTH IS WITHIN $\frac{1}{2}$ OF THE HEIGHT OF THE CREST.

5. CHECK DAMS ARE TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND APPROVED BY THE LOCAL JURISDICTION.

6. WHEN CHECK DAMS ARE REMOVED, EXCAVATIONS SHALL BE FILLED WITH SUITABLE COMPACTED BACKFILL. DISTURBED AREA SHALL BE SEEDED AND MULCHED AND COVERED WITH GEOTEXTILE OR OTHERWISE STABILIZED IN A MANNER APPROVED BY THE LOCAL JURISDICTION.

(DETAILS ADAPTED FROM DOUGLAS COUNTY, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

1. SEE PLAN VIEW FOR:

-LOCATIONS OF CHECK DAMS.

-CHECK DAM TYPE (CHECK DAM OR REINFORCED CHECK DAM).

-LENGTH (L), CREST LENGTH (CL), AND DEPTH (D).

2. CHECK DAMS INDICATED ON THE SWMP SHALL BE INSTALLED PRIOR TO AN UPSTREAM LAND-DISTURBING ACTIVITIES.

3. REINFORCED CHECK DAMS, GABIONS SHALL HAVE GALVANIZED TWISTED WIRE NETTING WITH A MAXIMUM OPENING DIMENSION OF $4\frac{1}{2}$ " AND A MINIMUM WIRE THICKNESS OF 0.10". WIRE "HOG RINGS" AT 4" SPACING OR OTHER APPROVED MEANS SHALL BE USED AT ALL GABION SEAMS AND TO SECURE THE GABION TO THE ADJACENT SECTION.

4. THE CHECK DAM SHALL BE TRENCHED INTO THE GROUND A MINIMUM OF 1' 6".

5. GEOTEXTILE BLANKET SHALL BE PLACED IN THE REINFORCED CHECK DAM TRENCH EXTENDING A MINIMUM OF 1' 6" ON BOTH THE UPSTREAM AND DOWNSTREAM SIDES OF THE REINFORCED CHECK DAM.

CD-2. REINFORCED CHECK DAM

REINFORCED CHECK DAM MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPS HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. SEDIMENT ACCUMULATED UPSTREAM OF REINFORCED CHECK DAMS SHALL BE REMOVED AS NEEDED TO MAINTAIN THE EFFECTIVENESS OF BMP, TYPICALLY WHEN THE UPSTREAM SEDIMENT DEPTH IS WITHIN ½ THE HEIGHT OF THE CREST.

5. REPAIR OR REPLACE REINFORCED CHECK DAMS WHEN THERE ARE SIGNS OF DAMAGE SUCH AS HOLES IN THE GABION OR UNDERCUTTING.

6. REINFORCED CHECK DAMS ARE TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND APPROVED BY THE LOCAL JURISDICTION.

7. WHEN REINFORCED CHECK DAMS ARE REMOVED, ALL DISTURBED AREAS SHALL BE COVERED WITH TOPSOIL, SEEDED AND MULCHED, AND COVERED WITH A GEOTEXTILE BLANKET, OR OTHERWISE STABILIZED AS APPROVED BY LOCAL JURISDICTION.

(DETAIL ADAPTED FROM DOUGLAS COUNTY, COLORADO AND CITY OF AURORA, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

Wind erosion and dust control BMPs help to keep soil particles from entering the air as a result of land disturbing construction activities. These BMPs include a variety of practices generally focused on either graded disturbed areas or construction roadways. For graded areas, practices such as seeding and mulching, use of soil binders, site watering, or other practices that provide prompt surface cover should be used. For construction roadways, road watering and stabilized surfaces should be considered.

Photograph DC-1. Water truck used for dust suppression. Photo courtesy of Douglas County.

Appropriate Uses

Dust control measures should be used on any site where dust poses a problem to air quality. Dust control is important to control for the health of construction workers and surrounding waterbodies.

Design and Installation

The following construction BMPs can be used for dust control:

- An irrigation/sprinkler system can be used to wet the top layer of disturbed soil to help keep dry soil particles from becoming airborne.
- Seeding and mulching can be used to stabilize disturbed surfaces and reduce dust emissions.
- Protecting existing vegetation can help to slow wind velocities across the ground surface, thereby limiting the likelihood of soil particles to become airborne.
- Spray-on soil binders form a bond between soil particles keeping them grounded. Chemical treatments may require additional permitting requirements. Potential impacts to surrounding waterways and habitat must be considered prior to use.
- Placing rock on construction roadways and entrances will help keep dust to a minimum across the construction site.
- Wind fences can be installed on site to reduce wind speeds. Install fences perpendicular to the prevailing wind direction for maximum effectiveness.

Maintenance and Removal

When using an irrigation/sprinkler control system to aid in dust control, be careful not to overwater. Overwatering will cause construction vehicles to track mud off-site.

Wind Erosion Control/ Dust Control	
Functions	
Erosion Control	Yes
Sediment Control	No
Site/Material Management	Moderate

Surface Hardening (SH)

Description

Surface hardening can be a temporary or permanent stabilization of the surface of a site.

Examples

- Gravel placement (either permanent or temporary).
- Asphalt and/or concrete.
- Building or structure roof.
- Chemical soil binders (e.g., magnesium chloride).
- Highly compacted soils of soil types that result in a concrete like consistency when dry.

Applicability

Surface hardening stabilizes portions of the site and reduces the potential for sediment transport from the stabilized area.

Limitations

- Typically surface hardened areas will generate more runoff after stabilization. These increased flows must be accounted for by downstream facilities.
- If used as a temporary stabilization method, then other temporary BMPs may be required once the surface hardening is removed.

Design criteria

No formal design is required.

Construction specifications

No formal specifications required.

Maintenance considerations

The frequency of inspections should be in accordance with the CSWMP. Maintenance of permanent surface hardened areas such are asphalt, concrete, and roofs is unlikely to be required. Gravel and highly compacted soil areas should be monitored to ensure sediment transport from the area is minimized. Downstream receiving areas should be checks to ensure those facilities are adequately handling the increased flows.

Concrete waste management involves designating and properly managing a specific area of the construction site as a concrete washout area. A concrete washout area can be created using one of several approaches designed to receive wash water from washing of tools and concrete mixer chutes, liquid concrete waste from dump trucks, mobile batch mixers, or pump trucks. Three basic approaches are available: excavation of a pit in the ground, use of an above ground storage area, or use of prefabricated haulaway concrete washout containers. Surface discharges of concrete washout water from construction sites are prohibited.

Photograph CWA-1. Example of concrete washout area. Note gravel tracking pad for access and sign.

Appropriate Uses

Concrete washout areas must be designated on all sites that will generate concrete wash water or liquid concrete waste from onsite concrete mixing or concrete delivery.

Because pH is a pollutant of concern for washout activities, when unlined pits are used for concrete washout, the soil must have adequate buffering capacity to result in protection of state groundwater standards; otherwise, a liner/containment must be used. The following management practices are recommended to prevent an impact from unlined pits to groundwater:

- The use of the washout site should be temporary (less than 1 year), and
- The washout site should be not be located in an area where shallow groundwater may be present, such as near natural drainages, springs, or wetlands.

Design and Installation

Concrete washout activities must be conducted in a manner that does not contribute pollutants to surface waters or stormwater runoff. Concrete washout areas may be lined or unlined excavated pits in the ground, commercially manufactured prefabricated washout containers, or aboveground holding areas constructed of berms, sandbags or straw bales with a plastic liner.

Although unlined washout areas may be used, lined pits may be required to protect groundwater under certain conditions.

Do not locate an unlined washout area within 400 feet of any natural drainage pathway or waterbody or within 1,000 feet of any wells or drinking water sources. Even for lined concrete washouts, it is advisable to locate the facility away from waterbodies and drainage paths. If site constraints make these

Concrete Washout Area		
Functions		
Erosion Control	No	
Sediment Control	No	
Site/Material Management	Yes	

setbacks infeasible or if highly permeable soils exist in the area, then the pit must be installed with an impermeable liner (16 mil minimum thickness) or surface storage alternatives using prefabricated concrete washout devices or a lined aboveground storage area should be used.

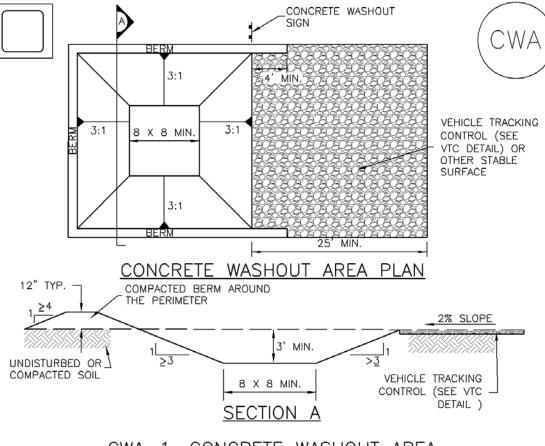
Design details with notes are provided in Detail CWA-1 for pits and CWA-2 for aboveground storage areas. Pre-fabricated concrete washout container information can be obtained from vendors.

Maintenance and Removal

A key consideration for concrete washout areas is to ensure that adequate signage is in place identifying the location of the washout area. Part of inspecting and maintaining washout areas is ensuring that adequate signage is provided and in good repair and that the washout area is being used, as opposed to washout in non-designated areas of the site.

Remove concrete waste in the washout area, as needed to maintain BMP function (typically when filled to about two-thirds of its capacity). Collect concrete waste and deliver offsite to a designated disposal location.

Upon termination of use of the washout site, accumulated solid waste, including concrete waste and any contaminated soils, must be removed from the site to prevent on-site disposal of solid waste. If the wash water is allowed to evaporate and the concrete hardens, it may be recycled.



Photograph CWA-2. Prefabricated concrete washout. Photo courtesy of CDOT.

Photograph CWA-3. Earthen concrete washout. Photo courtesy of CDOT.

MM-1

<u>CWA-1. CONCRETE WASHOUT AREA</u>

CWA INSTALLATION NOTES

1. SEE PLAN VIEW FOR:

-CWA INSTALLATION LOCATION.

2. DO NOT LOCATE AN UNLINED CWA WITHIN 400' OF ANY NATURAL DRAINAGE PATHWAY OR WATERBODY. DO NOT LOCATE WITHIN 1,000' OF ANY WELLS OR DRINKING WATER SOURCES. IF SITE CONSTRAINTS MAKE THIS INFEASIBLE, OR IF HIGHLY PERMEABLE SOILS EXIST ON SITE, THE CWA MUST BE INSTALLED WITH AN IMPERMEABLE LINER (16 MIL MIN. THICKNESS) OR SURFACE STORAGE ALTERNATIVES USING PREFABRICATED CONCRETE WASHOUT DEVICES OR A LINED ABOVE GROUND STORAGE ARE SHOULD BE USED.

3. THE CWA SHALL BE INSTALLED PRIOR TO CONCRETE PLACEMENT ON SITE.

4. CWA SHALL INCLUDE A FLAT SUBSURFACE PIT THAT IS AT LEAST 8' BY 8' SLOPES LEADING OUT OF THE SUBSURFACE PIT SHALL BE 3:1 OR FLATTER. THE PIT SHALL BE AT LEAST 3' DEEP.

5. BERM SURROUNDING SIDES AND BACK OF THE CWA SHALL HAVE MINIMUM HEIGHT OF 1'.

6. VEHICLE TRACKING PAD SHALL BE SLOPED 2% TOWARDS THE CWA.

7. SIGNS SHALL BE PLACED AT THE CONSTRUCTION ENTRANCE, AT THE CWA, AND ELSEWHERE AS NECESSARY TO CLEARLY INDICATE THE LOCATION OF THE CWA TO OPERATORS OF CONCRETE TRUCKS AND PUMP RIGS.

8. USE EXCAVATED MATERIAL FOR PERIMETER BERM CONSTRUCTION.

CWA MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. THE CWA SHALL BE REPAIRED, CLEANED, OR ENLARGED AS NECESSARY TO MAINTAIN CAPACITY FOR CONCRETE WASTE. CONCRETE MATERIALS, ACCUMULATED IN PIT, SHALL BE REMOVED ONCE THE MATERIALS HAVE REACHED A DEPTH OF 2'.

5. CONCRETE WASHOUT WATER, WASTED PIECES OF CONCRETE AND ALL OTHER DEBRIS IN THE SUBSURFACE PIT SHALL BE TRANSPORTED FROM THE JOB SITE IN A WATER-TIGHT CONTAINER AND DISPOSED OF PROPERLY.

6. THE CWA SHALL REMAIN IN PLACE UNTIL ALL CONCRETE FOR THE PROJECT IS PLACED.

7. WHEN THE CWA IS REMOVED, COVER THE DISTURBED AREA WITH TOP SOIL, SEED AND MULCH OR OTHERWISE STABILIZED IN A MANNER APPROVED BY THE LOCAL JURISDICTION.

(DETAIL ADAPTED FROM DOUGLAS COUNTY, COLORADO AND THE CITY OF PARKER, COLORADO, NOT AVAILABLE IN AUTOCAD).

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

Stockpile management includes measures to minimize erosion and sediment transport from soil stockpiles.

Appropriate Uses

Stockpile management should be used when soils or other erodible materials are stored at the construction site. Special attention should be given to stockpiles in close proximity to natural or manmade storm systems.

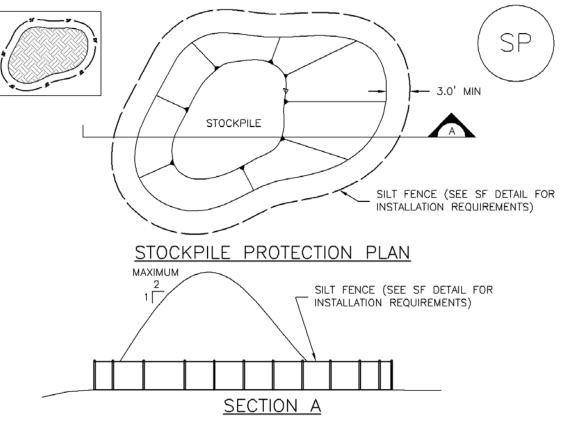
Photograph SP-1. A topsoil stockpile that has been partially revegetated and is protected by silt fence perimeter control.

Design and Installation

Locate stockpiles away from all drainage system components including storm sewer inlets. Where practical, choose stockpile locations that that will remain undisturbed for the longest period of time as the phases of construction progress. Place sediment control BMPs around the perimeter of the stockpile, such as sediment control logs, rock socks, silt fence, straw bales and sand bags. See Detail SP-1 for guidance on proper establishment of perimeter controls around a stockpile. For stockpiles in active use, provide a stabilized designated access point on the upgradient side of the stockpile.

Stabilize the stockpile surface with surface roughening, temporary seeding and mulching, erosion control blankets, or soil binders. Soils stockpiled for an extended period (typically for more than 60 days) should be seeded and mulched with a temporary grass cover once the stockpile is placed (typically within 14 days). Use of mulch only or a soil binder is acceptable if the stockpile will be in place for a more limited time period (typically 30-60 days). Timeframes for stabilization of stockpiles noted in this fact sheet are "typical" guidelines. Check permit requirements for specific federal, state, and/or local requirements that may be more prescriptive.

Stockpiles should not be placed in streets or paved areas unless no other practical alternative exists. See the Stabilized Staging Area Fact Sheet for guidance when staging in roadways is unavoidable due to space or right-of-way constraints. For paved areas, rock socks must be used for perimeter control and all inlets with the potential to receive sediment from the stockpile (even from vehicle tracking) must be protected.


Maintenance and Removal

Inspect perimeter controls and inlet protection in accordance with their respective BMP Fact Sheets. Where seeding, mulch and/or soil binders are used, reseeding or reapplication of soil binder may be necessary.

When temporary removal of a perimeter BMP is necessary to access a stockpile, ensure BMPs are reinstalled in accordance with their respective design detail section.

Stockpile Management	
Functions	
Erosion Control	Yes
Sediment Control	Yes
Site/Material Management	Yes

When the stockpile is no longer needed, properly dispose of excess materials and revegetate or otherwise stabilize the ground surface where the stockpile was located.

<u>SP-1. STOCKPILE PROTECTION</u>

STOCKPILE PROTECTION INSTALLATION NOTES

1. SEE PLAN VIEW FOR: -LOCATION OF STOCKPILES. -TYPE OF STOCKPILE PROTECTION.

2. INSTALL PERIMETER CONTROLS IN ACCORDANCE WITH THEIR RESPECTIVE DESIGN DETAILS. SILT FENCE IS SHOWN IN THE STOCKPILE PROTECTION DETAILS; HOWEVER, OTHER TYPES OF PERIMETER CONTROLS INCLUDING SEDIMENT CONTROL LOGS OR ROCK SOCKS MAY BE SUITABLE IN SOME CIRCUMSTANCES. CONSIDERATIONS FOR DETERMINING THE APPROPRIATE TYPE OF PERIMETER CONTROL FOR A STOCKPILE INCLUDE WHETHER THE STOCKPILE IS LOCATED ON A PERVIOUS OR IMPERVIOUS SURFACE, THE RELATIVE HEIGHTS OF THE PERIMETER CONTROL AND STOCKPILE, THE ABILITY OF THE PERIMETER CONTROL TO CONTAIN THE STOCKPILE WITHOUT FAILING IN THE EVENT THAT MATERIAL FROM THE STOCKPILE SHIFTS OR SLUMPS AGAINST THE PERIMETER, AND OTHER FACTORS.

3. STABILIZE THE STOCKPILE SURFACE WITH SURFACE ROUGHENING, TEMPORARY SEEDING AND MULCHING, EROSION CONTROL BLANKETS, OR SOIL BINDERS. SOILS STOCKPILED FOR AN EXTENDED PERIOD (TYPICALLY FOR MORE THAN 60 DAYS) SHOULD BE SEEDED AND MULCHED WITH A TEMPORARY GRASS COVER ONCE THE STOCKPILE IS PLACED (TYPICALLY WITHIN 14 DAYS). USE OF MULCH ONLY OR A SOIL BINDER IS ACCEPTABLE IF THE STOCKPILE WILL BE IN PLACE FOR A MORE LIMITED TIME PERIOD (TYPICALLY 30-60 DAYS).

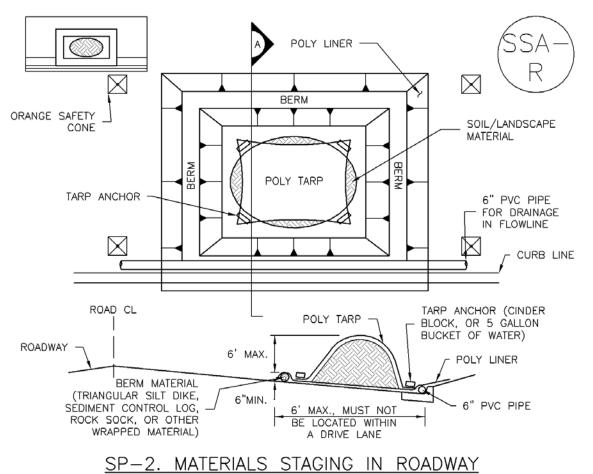
4. FOR TEMPORARY STOCKPILES ON THE INTERIOR PORTION OF A CONSTRUCTION SITE, WHERE OTHER DOWNGRADIENT CONTROLS, INCLUDING PERIMETER CONTROL, ARE IN PLACE, STOCKPILE PERIMETER CONTROLS MAY NOT BE REQUIRED.

STOCKPILE PROTECTION MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPS HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.


STOCKPILE PROTECTION MAINTENANCE NOTES

4. IF PERIMETER PROTECTION MUST BE MOVED TO ACCESS SOIL STOCKPILE, REPLACE PERIMETER CONTROLS BY THE END OF THE WORKDAY.

5. STOCKPILE PERIMETER CONTROLS CAN BE REMOVED ONCE ALL THE MATERIAL FROM THE STOCKPILE HAS BEEN USED.

(DETAILS ADAPTED FROM PARKER, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

MATERIALS STAGING IN ROADWAYS INSTALLATION NOTES

- 1. SEE PLAN VIEW FOR
 - -LOCATION OF MATERIAL STAGING AREA(S).

-CONTRACTOR MAY ADJUST LOCATION AND SIZE OF STAGING AREA WITH APPROVAL FROM THE LOCAL JURISDICTION.

2. FEATURE MUST BE INSTALLED PRIOR TO EXCAVATION, EARTHWORK OR DELIVERY OF MATERIALS.

3. MATERIALS MUST BE STATIONED ON THE POLY LINER. ANY INCIDENTAL MATERIALS DEPOSITED ON PAVED SECTION OR ALONG CURB LINE MUST BE CLEANED UP PROMPTLY.

4. POLY LINER AND TARP COVER SHOULD BE OF SIGNIFICANT THICKNESS TO PREVENT DAMAGE OR LOSS OF INTEGRITY.

5. SAND BAGS MAY BE SUBSTITUTED TO ANCHOR THE COVER TARP OR PROVIDE BERMING UNDER THE BASE LINER.

6. FEATURE IS NOT INTENDED FOR USE WITH WET MATERIAL THAT WILL BE DRAINING AND/OR SPREADING OUT ON THE POLY LINER OR FOR DEMOLITION MATERIALS.

7. THIS FEATURE CAN BE USED FOR:

-UTILITY REPAIRS.

-WHEN OTHER STAGING LOCATIONS AND OPTIONS ARE LIMITED.

-OTHER LIMITED APPLICATION AND SHORT DURATION STAGING.

MATERIALS STAGING IN ROADWAY MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. INSPECT PVC PIPE ALONG CURB LINE FOR CLOGGING AND DEBRIS. REMOVE OBSTRUCTIONS PROMPTLY.

5. CLEAN MATERIAL FROM PAVED SURFACES BY SWEEPING OR VACUUMING.

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

(DETAILS ADAPTED FROM AURORA, COLORADO)

Implement construction site good housekeeping practices to prevent pollution associated with solid, liquid and hazardous construction-related materials and wastes. Stormwater Management Plans (SWMPs) should clearly specify BMPs including these good housekeeping practices:

- Provide for waste management.
- Establish proper building material staging areas.
- Designate paint and concrete washout areas.
- Establish proper equipment/vehicle fueling and maintenance practices.
- Control equipment/vehicle washing and allowable nonstormwater discharges.
- Develop a spill prevention and response plan.

Acknowledgement: This Fact Sheet is based directly on EPA guidance provided in *Developing Your Stormwater Pollution Prevent Plan* (EPA 2007).

Appropriate Uses

Photographs GH-1 and GH-2. Proper materials storage and secondary containment for fuel tanks are important good housekeeping practices. Photos courtesy of CDOT and City of Aurora.

Good housekeeping practices are necessary at all construction sites.

Design and Installation

The following principles and actions should be addressed in SWMPs:

Provide for Waste Management. Implement management procedures and practices to prevent or reduce the exposure and transport of pollutants in stormwater from solid, liquid and sanitary wastes that will be generated at the site. Practices such as trash disposal, recycling, proper material handling, and cleanup measures can reduce the potential for stormwater runoff to pick up construction site wastes and discharge them to surface waters. Implement a comprehensive set of waste-management practices for hazardous or toxic materials, such as paints, solvents, petroleum products, pesticides, wood preservatives, acids, roofing tar, and other materials. Practices should include storage, handling, inventory, and cleanup procedures, in case of spills. Specific practices that should be considered include:

Solid or Construction Waste

• Designate trash and bulk waste-collection areas onsite.

Good Housekeeping		
Functions		
Erosion Control	No	
Sediment Control	No	
Site/Material Management	Yes	

- o Recycle materials whenever possible (e.g., paper, wood, concrete, oil).
- o Segregate and provide proper disposal options for hazardous material wastes.
- Clean up litter and debris from the construction site daily.
- Locate waste-collection areas away from streets, gutters, watercourses, and storm drains. Waste-collection areas (dumpsters, and such) are often best located near construction site entrances to minimize traffic on disturbed soils. Consider secondary containment around waste collection areas to minimize the likelihood of contaminated discharges.
- o Empty waste containers before they are full and overflowing.

Sanitary and Septic Waste

- o Provide convenient, well-maintained, and properly located toilet facilities on-site.
- Locate toilet facilities away from storm drain inlets and waterways to prevent accidental spills and contamination of stormwater.
- o Maintain clean restroom facilities and empty portable toilets regularly.
- Where possible, provide secondary containment pans under portable toilets.
- o Provide tie-downs or stake-downs for portable toilets.
- o Educate employees, subcontractors, and suppliers on locations of facilities.
- Treat or dispose of sanitary and septic waste in accordance with state or local regulations. Do not discharge or bury wastewater at the construction site.
- o Inspect facilities for leaks. If found, repair or replace immediately.
- Special care is necessary during maintenance (pump out) to ensure that waste and/or biocide are not spilled on the ground.

Hazardous Materials and Wastes

- Develop and implement employee and subcontractor education, as needed, on hazardous and toxic waste handling, storage, disposal, and cleanup.
- Designate hazardous waste-collection areas on-site.
- Place all hazardous and toxic material wastes in secondary containment.

Photograph GH-3. Locate portable toilet facilities on level surfaces away from waterways and storm drains. Photo courtesy of WWE.

- Hazardous waste containers should be inspected to ensure that all containers are labeled properly and that no leaks are present.
- Establish Proper Building Material Handling and Staging Areas. The SWMP should include comprehensive handling and management procedures for building materials, especially those that are hazardous or toxic. Paints, solvents, pesticides, fuels and oils, other hazardous materials or building materials that have the potential to contaminate stormwater should be stored indoors or under cover whenever possible or in areas with secondary containment. Secondary containment measures prevent a spill from spreading across the site and may include dikes, berms, curbing, or other containment methods. Secondary containment techniques should also ensure the protection of groundwater. Designate staging areas for activities such as fueling vehicles, mixing paints, plaster, mortar, and other potential pollutants. Designated staging areas enable easier monitoring of the use of materials and clean up of spills. Training employees and subcontractors is essential to the success of this pollution prevention principle. Consider the following specific materials handling and staging practices:
 - Train employees and subcontractors in proper handling and storage practices.
 - Clearly designate site areas for staging and storage with signs and on construction drawings. Staging areas should be located in areas central to the construction site. Segment the staging area into sub-areas designated for vehicles, equipment, or stockpiles. Construction entrances and exits should be clearly marked so that delivery vehicles enter/exit through stabilized areas with vehicle tracking controls (See Vehicle Tracking Control Fact Sheet).
 - Provide storage in accordance with Spill Protection, Control and Countermeasures (SPCC) requirements and plans and provide cover and impermeable perimeter control, as necessary, for hazardous materials and contaminated soils that must be stored on site.
 - Ensure that storage containers are regularly inspected for leaks, corrosion, support or foundation failure, or other signs of deterioration and tested for soundness.
 - Reuse and recycle construction materials when possible.
- Designate Concrete Washout Areas. Concrete contractors should be encouraged to use the washout facilities at their own plants or dispatch facilities when feasible; however, concrete washout commonly occurs on construction sites. If it is necessary to provide for concrete washout areas onsite, designate specific washout areas and design facilities to handle anticipated washout water. Washout areas should also be provided for paint and stucco operations. Because washout areas can be a source of pollutants from leaks or spills, care must be taken with regard to their placement and proper use. See the Concrete Washout Area Fact Sheet for detailed guidance.

Both self-constructed and prefabricated washout containers can fill up quickly when concrete, paint, and stucco work are occurring on large portions of the site. Be sure to check for evidence that contractors are using the washout areas and not dumping materials onto the ground or into drainage facilities. If the washout areas are not being used regularly, consider posting additional signage, relocating the facilities to more convenient locations, or providing training to workers and contractors.

When concrete, paint, or stucco is part of the construction process, consider these practices which will help prevent contamination of stormwater. Include the locations of these areas and the maintenance and inspection procedures in the SWMP.

- Do not washout concrete trucks or equipment into storm drains, streets, gutters, uncontained areas, or streams. Only use designated washout areas.
- Establish washout areas and advertise their locations with signs. Ensure that signage remains in good repair.
- Provide adequate containment for the amount of wash water that will be used.
- Inspect washout structures daily to detect leaks or tears and to identify when materials need to be removed.
- Dispose of materials properly. The preferred method is to allow the water to evaporate and to recycle the hardened concrete. Full service companies may provide dewatering services and should dispose of wastewater properly. Concrete wash water can be highly polluted. It should not be discharged to any surface water, storm sewer system, or allowed to infiltrate into the ground in the vicinity of waterbodies. Washwater should not be discharged to a sanitary sewer system without first receiving written permission from the system operator.
- Establish Proper Equipment/Vehicle Fueling and Maintenance Practices. Create a clearly designated on-site fueling and maintenance area that is clean and dry. The on-site fueling area should have a spill kit, and staff should know how to use it. If possible, conduct vehicle fueling and maintenance activities in a covered area. Consider the following practices to help prevent the discharge of pollutants to stormwater from equipment/vehicle fueling and maintenance. Include the locations of designated fueling and maintenance areas and inspection and maintenance procedures in the SWMP.
 - Train employees and subcontractors in proper fueling procedures (stay with vehicles during fueling, proper use of pumps, emergency shutoff valves, etc.).
 - Inspect on-site vehicles and equipment regularly for leaks, equipment damage, and other service problems.
 - Clearly designate vehicle/equipment service areas away from drainage facilities and watercourses to prevent stormwater run-on and runoff.
 - Use drip pans, drip cloths, or absorbent pads when replacing spent fluids.
 - Collect all spent fluids, store in appropriate labeled containers in the proper storage areas, and recycle fluids whenever possible.
- Control Equipment/Vehicle Washing and Allowable Non-Stormwater Discharges. Implement
 practices to prevent contamination of surface and groundwater from equipment and vehicle wash
 water. Representative practices include:
 - Educate employees and subcontractors on proper washing procedures.
 - o Use off-site washing facilities, when available.
 - Clearly mark the washing areas and inform workers that all washing must occur in this area.
 - Contain wash water and treat it using BMPs. Infiltrate washwater when possible, but maintain separation from drainage paths and waterbodies.

- Use high-pressure water spray at vehicle washing facilities without detergents. Water alone can remove most dirt adequately.
- o Do not conduct other activities, such as vehicle repairs, in the wash area.
- Include the location of the washing facilities and the inspection and maintenance procedures in the SWMP.
- Develop a Spill Prevention and Response Plan. Spill prevention and response procedures must be identified in the SWMP. Representative procedures include identifying ways to reduce the chance of spills, stop the source of spills, contain and clean up spills, dispose of materials contaminated by spills, and train personnel responsible for spill prevention and response. The plan should also specify material handling procedures and storage requirements and ensure that clear and concise spill cleanup procedures are provided and posted for areas in which spills may potentially occur. When developing a spill prevention plan, include the following:
 - Note the locations of chemical storage areas, storm drains, tributary drainage areas, surface waterbodies on or near the site, and measures to stop spills from leaving the site.
 - Provide proper handling and safety procedures for each type of waste. Keep Material Safety Data Sheets (MSDSs) for chemical used on site with the SWMP.
 - Establish an education program for employees and subcontractors on the potential hazards to humans and the environment from spills and leaks.
 - Specify how to notify appropriate authorities, such as police and fire departments, hospitals, or municipal sewage treatment facilities to request assistance. Emergency procedures and contact numbers should be provided in the SWMP and posted at storage locations.
 - Describe the procedures, equipment and materials for immediate cleanup of spills and proper disposal.
 - Identify personnel responsible for implementing the plan in the event of a spill. Update the spill prevention plan and clean up materials as changes occur to the types of chemicals stored and used at the facility.

Spill Prevention, Control, and Countermeasure (SPCC) Plan

Construction sites may be subject to 40 CFR Part 112 regulations that require the preparation and implementation of a SPCC Plan to prevent oil spills from aboveground and underground storage tanks. The facility is subject to this rule if it is a non-transportation-related facility that:

- Has a total storage capacity greater than 1,320 gallons or a completely buried storage capacity greater than 42,000 gallons.
- Could reasonably be expected to discharge oil in quantities that may be harmful to navigable waters
 of the United States and adjoining shorelines.

Furthermore, if the facility is subject to 40 CFR Part 112, the SWMP should reference the SPCC Plan. To find out more about SPCC Plans, see EPA's website on SPPC at <u>www.epa.gov/oilspill/spcc.htm</u>.

Reporting Oil Spills

In the event of an oil spill, contact the National Response Center toll free at 1-800-424- 8802 for assistance, or for more details, visit their website: <u>www.nrc.uscg.mil</u>.

Maintenance and Removal

Effective implementation of good housekeeping practices is dependent on clear designation of personnel responsible for supervising and implementing good housekeeping programs, such as site cleanup and disposal of trash and debris, hazardous material management and disposal, vehicle and equipment maintenance, and other practices. Emergency response "drills" may aid in emergency preparedness.

Checklists may be helpful in good housekeeping efforts.

Staging and storage areas require permanent stabilization when the areas are no longer being used for construction-related activities.

Construction-related materials, debris and waste must be removed from the construction site once construction is complete.

Design Details

See the following Fact Sheets for related Design Details:

MM-1 Concrete Washout Area

MM-2 Stockpile Management

SM-4 Vehicle Tracking Control

Design details are not necessary for other good housekeeping practices; however, be sure to designate where specific practices will occur on the appropriate construction drawings.

A silt fence is a woven geotextile fabric attached to wooden posts and trenched into the ground. It is designed as a sediment barrier to intercept sheet flow runoff from disturbed areas.

Appropriate Uses

A silt fence can be used where runoff is conveyed from a disturbed area as sheet flow. Silt fence is not designed to receive concentrated flow or to be used as a filter fabric. Typical uses include:

- Down slope of a disturbed area to accept sheet flow.
- Along the perimeter of a receiving water such as a stream, pond or wetland.

Photograph SF-1. Silt fence creates a sediment barrier, forcing sheet flow runoff to evaporate or infiltrate.

• At the perimeter of a construction site.

Design and Installation

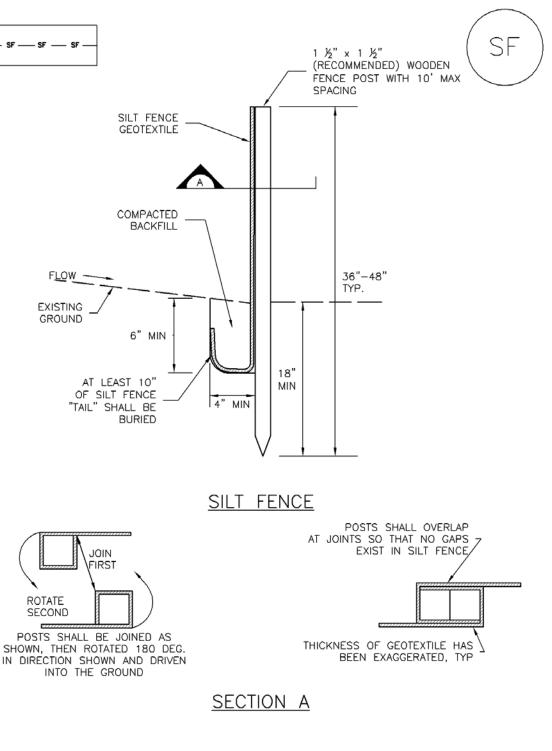
Silt fence should be installed along the contour of slopes so that it intercepts sheet flow. The maximum recommended tributary drainage area per 100 lineal feet of silt fence, installed along the contour, is approximately 0.25 acres with a disturbed slope length of up to 150 feet and a tributary slope gradient no steeper than 3:1. Longer and steeper slopes require additional measures. This recommendation only applies to silt fence installed along the contour. Silt fence installed for other uses, such as perimeter control, should be installed in a way that will not produce concentrated flows. For example, a "J-hook" installation may be appropriate to force runoff to pond and evaporate or infiltrate in multiple areas rather than concentrate and cause erosive conditions parallel to the silt fence.

See Detail SF-1 for proper silt fence installation, which involves proper trenching, staking, securing the fabric to the stakes, and backfilling the silt fence. Properly installed silt fence should not be easily pulled out by hand and there should be no gaps between the ground and the fabric.

Silt fence must meet the minimum allowable strength requirements, depth of installation requirement, and

other specifications in the design details. Improper installation of silt fence is a common reason for silt fence failure; however, when properly installed and used for the appropriate purposes, it can be highly effective.

Silt Fence		
Functions		
Erosion Control	No	
Sediment Control	Yes	
Site/Material Management	No	


Maintenance and Removal

Inspection of silt fence includes observing the material for tears or holes and checking for slumping fence and undercut areas bypassing flows. Repair of silt fence typically involves replacing the damaged section with a new section. Sediment accumulated behind silt fence should be removed, as needed to maintain BMP effectiveness, typically before it reaches a depth of 6 inches.

Silt fence may be removed when the upstream area has reached final stabilization.

Photograph SF-2. When silt fence is not installed along the contour, a "J-hook" installation may be appropriate to ensure that the BMP does not create concentrated flow parallel to the silt fence. Photo courtesy of Tom Gore.

SF-1. SILT FENCE

SILT FENCE INSTALLATION NOTES

1. SILT FENCE MUST BE PLACED AWAY FROM THE TOE OF THE SLOPE TO ALLOW FOR WATER PONDING. SILT FENCE AT THE TOE OF A SLOPE SHOULD BE INSTALLED IN A FLAT LOCATION AT LEAST SEVERAL FEET (2–5 FT) FROM THE TOE OF THE SLOPE TO ALLOW ROOM FOR PONDING AND DEPOSITION.

2. A UNIFORM 6" X 4" ANCHOR TRENCH SHALL BE EXCAVATED USING TRENCHER OR SILT FENCE INSTALLATION DEVICE. NO ROAD GRADERS, BACKHOES, OR SIMILAR EQUIPMENT SHALL BE USED.

3. COMPACT ANCHOR TRENCH BY HAND WITH A "JUMPING JACK" OR BY WHEEL ROLLING. COMPACTION SHALL BE SUCH THAT SILT FENCE RESISTS BEING PULLED OUT OF ANCHOR TRENCH BY HAND.

4. SILT FENCE SHALL BE PULLED TIGHT AS IT IS ANCHORED TO THE STAKES. THERE SHOULD BE NO NOTICEABLE SAG BETWEEN STAKES AFTER IT HAS BEEN ANCHORED TO THE STAKES.

5. SILT FENCE FABRIC SHALL BE ANCHORED TO THE STAKES USING 1" HEAVY DUTY STAPLES OR NAILS WITH 1" HEADS. STAPLES AND NAILS SHOULD BE PLACED 3" ALONG THE FABRIC DOWN THE STAKE.

6. AT THE END OF A RUN OF SILT FENCE ALONG A CONTOUR, THE SILT FENCE SHOULD BE TURNED PERPENDICULAR TO THE CONTOUR TO CREATE A "J-HOOK." THE "J-HOOK" EXTENDING PERPENDICULAR TO THE CONTOUR SHOULD BE OF SUFFICIENT LENGTH TO KEEP RUNOFF FROM FLOWING AROUND THE END OF THE SILT FENCE (TYPICALLY 10' - 20').

7. SILT FENCE SHALL BE INSTALLED PRIOR TO ANY LAND DISTURBING ACTIVITIES.

SILT FENCE MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs have failed, Repair or Replacement should be initiated upon discovery of the failure.

4. SEDIMENT ACCUMULATED UPSTREAM OF THE SILT FENCE SHALL BE REMOVED AS NEEDED TO MAINTAIN THE FUNCTIONALITY OF THE BMP, TYPICALLY WHEN DEPTH OF ACCUMULATED SEDIMENTS IS APPROXIMATELY 6".

5. REPAIR OR REPLACE SILT FENCE WHEN THERE ARE SIGNS OF WEAR, SUCH AS SAGGING, TEARING, OR COLLAPSE.

6. SILT FENCE IS TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND APPROVED BY THE LOCAL JURISDICTION, OR IS REPLACED BY AN EQUIVALENT PERIMETER SEDIMENT CONTROL BMP.

7. WHEN SILT FENCE IS REMOVED, ALL DISTURBED AREAS SHALL BE COVERED WITH TOPSOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED AS APPROVED BY LOCAL JURISDICTION.

(DETAIL ADAPTED FROM TOWN OF PARKER, COLORADO AND CITY OF AURORA, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

A sediment control log is a linear roll made of natural materials such as straw, coconut fiber, or compost. The most common type of sediment control log has straw filling and is often referred to as a "straw wattle." All sediment control logs are used as a sediment barrier to intercept sheet flow runoff from disturbed areas.

Appropriate Uses

Sediment control logs can be used in the following applications to trap sediment:

- As perimeter control for stockpiles and the site.
- As part of inlet protection designs.
- As check dams in small drainage ditches. (Sediment control logs are not intended for use in channels with high flow velocities.)
- On disturbed slopes to shorten flow lengths (as an erosion control).

Photographs SCL-1 and SCL-2. Sediment control logs used as 1) a perimeter control around a soil stockpile; and, 2) as a "J-hook" perimeter control at the corner of a construction site.

• As part of multi-layered perimeter control along a receiving water such as a stream, pond or wetland.

Sediment control logs work well in combination with other layers of erosion and sediment controls.

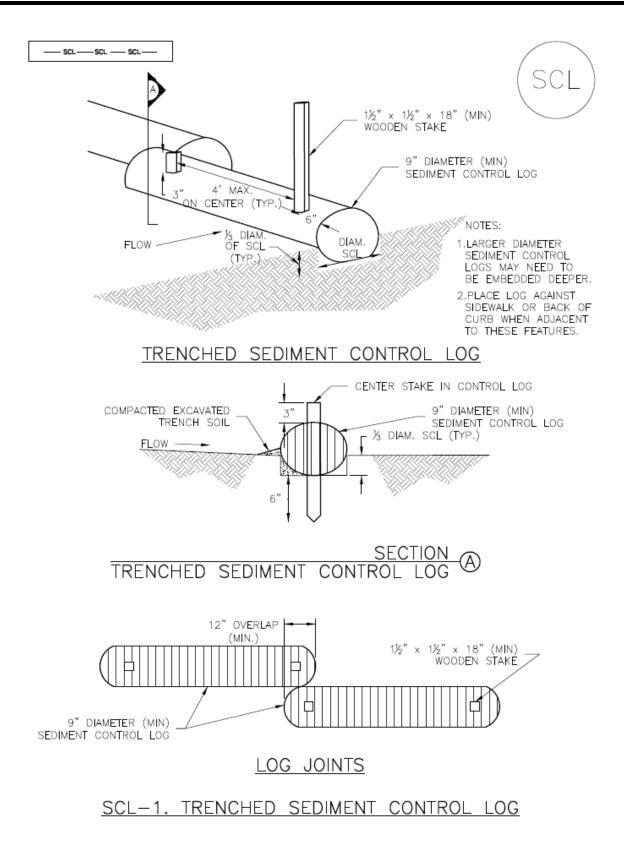
Design and Installation

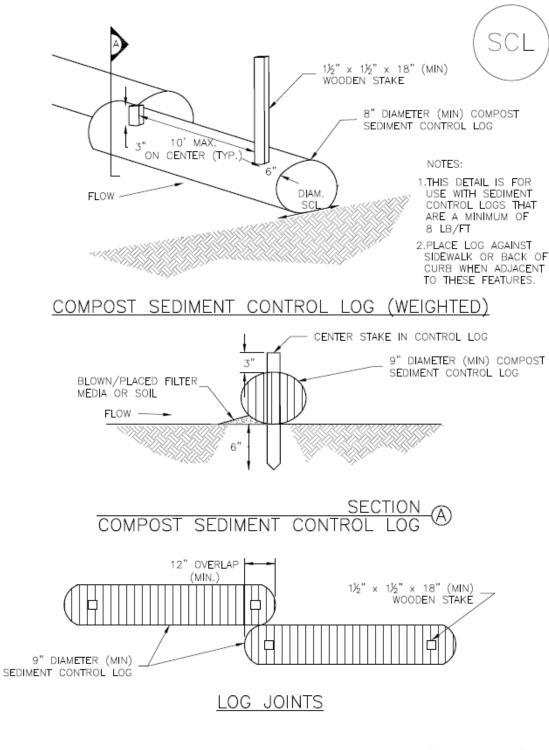
Sediment control logs should be installed along the contour to avoid concentrating flows. The maximum allowable tributary drainage area per 100 lineal feet of sediment control log, installed along the contour, is approximately 0.25 acres with a disturbed slope length of up to 150 feet and a tributary slope gradient no steeper than 3:1. Longer and steeper slopes require additional measures. This recommendation only applies to sediment control logs installed along the contour. When installed for other uses, such as

perimeter control, it should be installed in a way that will not produce concentrated flows. For example, a "J-hook" installation may be appropriate to force runoff to pond and evaporate or infiltrate in multiple areas rather than concentrate and cause erosive conditions parallel to the BMP.

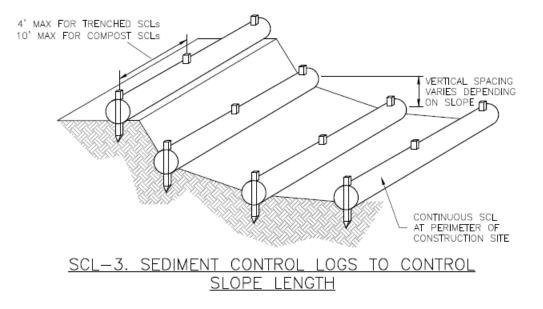
Sediment Control Log		
Functions		
Erosion Control	Moderate	
Sediment Control	Yes	
Site/Material Management	No	

Although sediment control logs initially allow runoff to flow through the BMP, they can quickly become a barrier and should be installed as if they are impermeable.


Design details and notes for sediment control logs are provided in the following details. Sediment logs must be properly installed per the detail to prevent undercutting, bypassing and displacement. When installed on slopes, sediment control logs should be installed along the contours (i.e., perpendicular to flow).


Improper installation can lead to poor performance. Be sure that sediment control logs are properly trenched (if lighter than 8 lb/foot), anchored and tightly jointed.

Maintenance and Removal


Be aware that sediment control logs will eventually degrade. Remove accumulated sediment before the depth is one-half the height of the sediment log and repair damage to the sediment log, typically by replacing the damaged section.

Once the upstream area is stabilized, remove and properly dispose of the logs. Areas disturbed beneath the logs may need to be seeded and mulched. Sediment control logs that are biodegradable may occasionally be left in place (e.g., when logs are used in conjunction with erosion control blankets as permanent slope breaks). However, removal of sediment control logs after final stabilization is typically appropriate when used in perimeter control, inlet protection and check dam applications. Compost from compost sediment control logs may be spread over the area and seeded as long as this does not cover newly established vegetation.

SCL-2. COMPOST SEDIMENT CONTROL LOG (WEIGHTED)

SEDIMENT CONTROL LOG INSTALLATION NOTES

1. SEE PLAN VIEW FOR LOCATION AND LENGTH OF SEDIMENT CONTROL LOGS.

2. SEDIMENT CONTROL LOGS THAT ACT AS A PERIMETER CONTROL SHALL BE INSTALLED PRIOR TO ANY UPGRADIENT LAND-DISTURBING ACTIVITIES.

 SEDIMENT CONTROL LOGS SHALL CONSIST OF STRAW, COMPOST, EXCELSIOR OR COCONUT FIBER, AND SHALL BE FREE OF ANY NOXIOUS WEED SEEDS OR DEFECTS INCLUDING RIPS, HOLES AND OBVIOUS WEAR.

4. SEDIMENT CONTROL LOGS MAY BE USED AS SMALL CHECK DAMS IN DITCHES AND SWALES. HOWEVER, THEY SHOULD NOT BE USED IN PERENNIAL STREAMS.

5. IT IS RECOMMENDED THAT SEDIMENT CONTROL LOGS BE TRENCHED INTO THE GROUND TO A DEPTH OF APPROXIMATELY 3/3 OF THE DIAMETER OF THE LOG. IF TRENCHING TO THIS DEPTH IS NOT FEASIBLE AND/OR DESIRABLE (SHORT TERM INSTALLATION WITH DESIRE NOT TO DAMAGE LANDSCAPE) A LESSER TRENCHING DEPTH MAY BE ACCEPTABLE WITH MORE ROBUST STAKING. COMPOST LOGS THAT ARE 8 LB/FT DO NOT NEED TO BE TRENCHED.

6. THE UPHILL SIDE OF THE SEDIMENT CONTROL LOG SHALL BE BACKFILLED WITH SOIL OR FILTER MATERIAL THAT IS FREE OF ROCKS AND DEBRIS. THE SOIL SHALL BE TIGHTLY COMPACTED INTO THE SHAPE OF A RIGHT TRIANGLE USING A SHOVEL OR WEIGHTED LAWN ROLLER OR BLOWN IN PLACE.

7. FOLLOW MANUFACTURERS' GUIDANCE FOR STAKING. IF MANUFACTURERS' INSTRUCTIONS DO NOT SPECIFY SPACING, STAKES SHALL BE PLACED ON 4' CENTERS AND EMBEDDED A MINIMUM OF 6" INTO THE GROUND. 3" OF THE STAKE SHALL PROTRUDE FROM THE TOP OF THE LOG. STAKES THAT ARE BROKEN PRIOR TO INSTALLATION SHALL BE REPLACED. COMPOST LOGS SHOULD BE STAKED 10' ON CENTER.

SEDIMENT CONTROL LOG MAINTENANCE NOTES

 INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. SEDIMENT ACCUMULATED UPSTREAM OF SEDIMENT CONTROL LOG SHALL BE REMOVED AS NEEDED TO MAINTAIN FUNCTIONALITY OF THE BMP, TYPICALLY WHEN DEPTH OF ACCUMULATED SEDIMENTS IS APPROXIMATELY ½ OF THE HEIGHT OF THE SEDIMENT CONTROL LOG.

5. SEDIMENT CONTROL LOG SHALL BE REMOVED AT THE END OF CONSTRUCTION.COMPOST FROM COMPOST LOGS MAY BE LEFT IN PLACE AS LONG AS BAGS ARE REMOVED AND THE AREA SEEDED. IF DISTURBED AREAS EXIST AFTER REMOVAL, THEY SHALL BE COVERED WITH TOP SOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED IN A MANNER APPROVED BY THE LOCAL JURISDICTION.

(DETAILS ADAPTED FROM TOWN OF PARKER, COLORADO, JEFFERSON COUNTY, COLORADO, DOUGLAS COUNTY, COLORADO, AND CITY OF AURORA, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

A straw bale barrier is a linear wall of straw bales designed to intercept sheet flow and trap sediment before runoff exits a disturbed area.

Appropriate Uses

Appropriate uses of properly installed straw bale barriers may include:

- As a perimeter control for a site or soil stockpile.
- As a sediment control at the toe of an erodible slope.

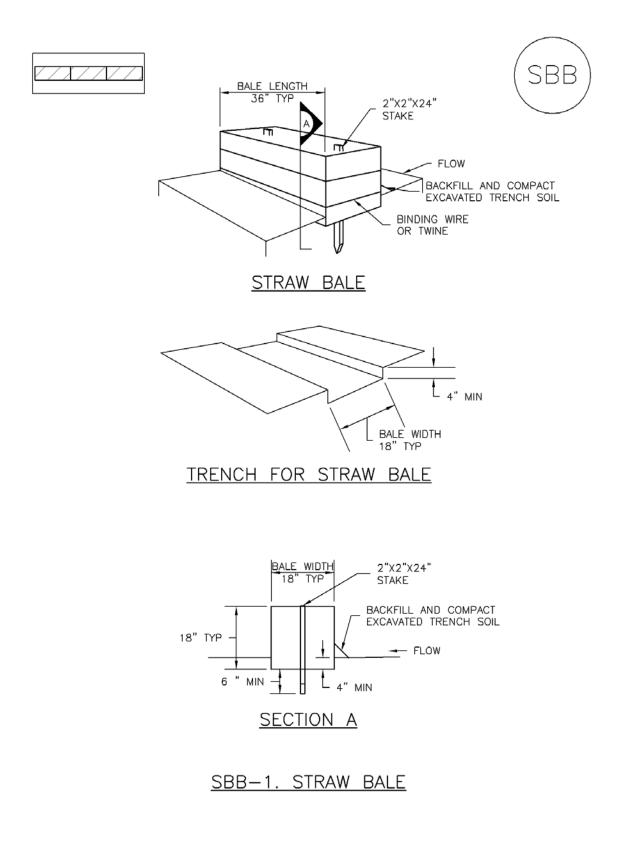
Photograph SBB-1. Straw bale barrier used for perimeter control. Photo courtesy of Tom Gore.

- Along the edge of a stream or drainage pathway to reduce sediment laden runoff from entering the waterway.
- As part of an inlet protection design in sump conditions (See Inlet Protection BMP).

Do not use straw bale barriers in areas of concentrated flow or in areas where ponding is not desirable. Straw bales tend to degrade quickly, so they should generally not be used in areas where longer term disturbance is expected.

Due to a history of inappropriate placement, poor installation, and short effective lifespan, the use of straw bales is discouraged or prohibited by some communities.

Design and Installation


The maximum recommended tributary drainage area per 100 lineal feet of straw bale barrier is 0.25 acres with a disturbed slope length of up to 150 feet and a tributary slope gradient no steeper than 3:1; longer and steeper slopes require additional measures. Design details with notes are provided in Detail SBB-1. To be effective, bales must be installed in accordance with the design details with proper trenching, staking, and binding. Jute and cotton string must not be used to bind the straw bale. The bales should be certified weed-free prior to use.

Maintenance and Removal

Check bales for rotting and replace as necessary. Straw bales degrade, and rotting bales require replacement on a regular basis (as often as every three months) depending on environmental conditions.

Check for undercutting, bypassed flows, and displacement. Repair by properly re-installing the straw bale barrier and repairing washouts around the bales. Remove sediment accumulated behind the bale when it reaches one-quarter of the bale height. Remove and properly dispose of the straw bale once the upstream area has been stabilized. Areas of disturbance beneath the bale should be seeded and mulched when the bale is removed.

Straw Bale Barrier		
Functions		
Erosion Control	No	
Sediment Control	Moderate	
Site/Material Management	No	

1. SEE PLAN VIEW FOR: -LOCATION(S) OF STRAW BALES.

2. STRAW BALES SHALL CONSIST OF CERTIFIED WEED FREE STRAW OR HAY. LOCAL JURISDICTIONS MAY REQUIRE PROOF THAT BALES ARE WEED FREE.

3. STRAW BALES SHALL CONSIST OF APPROXIMATELY 5 CUBIC FEET OF STRAW OR HAY AND WEIGH NOT LESS THAN 35 POUNDS.

4. WHEN STRAW BALES ARE USED IN SERIES AS A BARRIER, THE END OF EACH BALE SHALL BE TIGHTLY ABUTTING ONE ANOTHER.

5. STRAW BALE DIMENSIONS SHALL BE APPROXIMATELY 36"X18"X18".

6. A UNIFORM ANCHOR TRENCH SHALL BE EXCAVATED TO A DEPTH OF 4". STRAW BALES SHALL BE PLACED SO THAT BINDING TWINE IS ENCOMPASSING THE VERTICAL SIDES OF THE BALE(S). ALL EXCAVATED SOIL SHALL BE PLACED ON THE UPHILL SIDE OF THE STRAW BALE(S) AND COMPACTED.

7. TWO (2) WOODEN STAKES SHALL BE USED TO HOLD EACH BALE IN PLACE. WOODEN STAKES SHALL BE 2"X2"X24". WOODEN STAKES SHALL BE DRIVEN 6" INTO THE GROUND.

STRAW BALE MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPS HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. STRAW BALES SHALL BE REPLACED IF THEY BECOME HEAVILY SOILED, ROTTEN, OR DAMAGED BEYOND REPAIR.

5. SEDIMENT ACCUMULATED UPSTREAM OF STRAW BALE BARRIER SHALL BE REMOVED AS NEEDED TO MAINTAIN FUNCTIONALITY OF THE BMP, TYPICALLY WHEN DEPTH OF ACCUMULATED SEDIMENTS IS APPROXIMATELY ¼ OF THE HEIGHT OF THE STRAW BALE BARRIER.

6. STRAW BALES ARE TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND APPROVED BY THE LOCAL JURISDICTION.

7. WHEN STRAW BALES ARE REMOVED, ALL DISTURBED AREAS SHALL BE COVERED WITH TOPSOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED AS APPROVED BY LOCAL JURISDICTION.

(DETAILS ADAPTED FROM TOWN OF PARKER, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

A brush barrier is a perimeter sediment control constructed with stacked shrubs, tree limbs, and bushy vegetation that has been cleared from a construction area. Brush barriers reduce sediment loads by intercepting and slowing sheet flow from disturbed areas.

Appropriate Uses

A brush barrier is an appropriate BMP at sites where there is adequate brush from the clearing and grubbing of the construction site to construct an effective brush barrier. Brush barriers are typically used at the toe of slopes and should be implemented in combination with other BMPs such as surface

Photograph BB-1. Brush barrier constructed with chipped wood. Photo courtesy of EPA.

roughening and reseeding. Brush barriers should be considered short-term, supplemental BMPs because they are constructed of materials that naturally decompose. Brush barriers are not acceptable as a sole means of perimeter control, but they may be used internally within a site to reduce slope length or at the site perimeter in combination with other perimeter control BMPs for multi-layered protection.

Brush barriers are not appropriate for high-velocity flow areas. A large amount of material is needed to construct a useful brush barrier; therefore, alternative perimeter controls such as a fabric silt fence may be more appropriate for sites with little material from clearing.

Design and Installation

The drainage area for brush barriers should be no greater than 0.25 acre per 100 feet of barrier length. Additionally, the drainage slope leading down to a brush barrier must be no greater than 3:1 and no longer than 150 feet.

To construct an effective brush barrier, use only small shrubs and limbs with diameters of 6 inches or less. Larger materials (such as a tree stump) can create void spaces in the barrier, making it ineffective. The brush barrier mound should be at least 3 feet high and 5 feet wide at its base.

In order to avoid significant movement of the brush and improve effectiveness, a filter fabric can be placed over the top of the brush pile, keyed in on the upstream side, and anchored on the downstream side. On the upgradient side, the filter fabric cover should be buried in a trench 4 inches deep and 6 inches wide.

Brush Barrier		
Functions		
Erosion Control	Moderate	
Sediment Control	Moderate	
Site/Material	No	

Maintenance and Removal

Inspect the brush barrier for voids where concentrated flow or erosion is occurring. Voids in the brush barrier should be filled with additional brush. Accumulated sediment should be removed from the uphill side of the barrier when sediment height reaches one-third of the height of the barrier.

If filter fabric is used, inspect the filter fabric for damage; replace and properly secure it, as needed.

Once the upstream area has been vegetated or stabilized, the brush barrier should be removed and the underlying area revegetated.

A rock sock is constructed of gravel that has been wrapped by wire mesh or a geotextile to form an elongated cylindrical filter. Rock socks are typically used either as a perimeter control or as part of inlet protection. When placed at angles in the curb line, rock socks are typically referred to as curb socks. Rock socks are intended to trap sediment from stormwater runoff that flows onto roadways as a result of construction activities.

Appropriate Uses

Rock socks can be used at the perimeter of a disturbed area to control localized sediment loading. A benefit of rock

Photograph RS-1. Rock socks placed at regular intervals in a curb line can help reduce sediment loading to storm sewer inlets. Rock socks can also be used as perimeter controls.

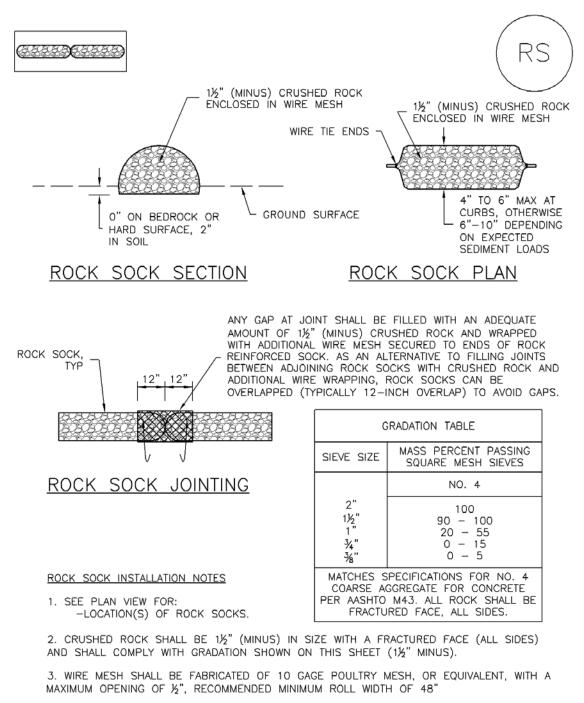
socks as opposed to other perimeter controls is that they do not have to be trenched or staked into the ground; therefore, they are often used on roadway construction projects where paved surfaces are present.

Use rock socks in inlet protection applications when the construction of a roadway is substantially complete and the roadway has been directly connected to a receiving storm system.

Design and Installation

When rock socks are used as perimeter controls, the maximum recommended tributary drainage area per 100 lineal feet of rock socks is approximately 0.25 acres with disturbed slope length of up to 150 feet and a tributary slope gradient no steeper than 3:1. A rock sock design detail and notes are provided in Detail RS-1. Also see the Inlet Protection Fact Sheet for design and installation guidance when rock socks are used for inlet protection and in the curb line.

When placed in the gutter adjacent to a curb, rock socks should protrude no more than two feet from the curb in order for traffic to pass safely. If located in a high traffic area, place construction markers to alert drivers and street maintenance workers of their presence.


Maintenance and Removal

Rock socks are susceptible to displacement and breaking due to vehicle traffic. Inspect rock socks for damage and repair or replace as necessary. Remove sediment by sweeping or vacuuming as needed to

maintain the functionality of the BMP, typically when sediment has accumulated behind the rock sock to one-half of the sock's height.

Once upstream stabilization is complete, rock socks and accumulated sediment should be removed and properly disposed.

Rock Sock		
Functions		
Erosion Control	No	
Sediment Control	Yes	
Site/Material Management	No	

4. WIRE MESH SHALL BE SECURED USING "HOG RINGS" OR WIRE TIES AT 6" CENTERS ALONG ALL JOINTS AND AT 2" CENTERS ON ENDS OF SOCKS.

5. SOME MUNICIPALITIES MAY ALLOW THE USE OF FILTER FABRIC AS AN ALTERNATIVE TO WIRE MESH FOR THE ROCK ENCLOSURE.

RS-1. ROCK SOCK PERIMETER CONTROL

ROCK SOCK MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. ROCK SOCKS SHALL BE REPLACED IF THEY BECOME HEAVILY SOILED, OR DAMAGED BEYOND REPAIR.

5. SEDIMENT ACCUMULATED UPSTREAM OF ROCK SOCKS SHALL BE REMOVED AS NEEDED TO MAINTAIN FUNCTIONALITY OF THE BMP, TYPICALLY WHEN DEPTH OF ACCUMULATED SEDIMENTS IS APPROXIMATELY ½ OF THE HEIGHT OF THE ROCK SOCK.

6. ROCK SOCKS ARE TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND APPROVED BY THE LOCAL JURISDICTION.

7. WHEN ROCK SOCKS ARE REMOVED, ALL DISTURBED AREAS SHALL BE COVERED WITH TOPSOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED AS APPROVED BY LOCAL JURISDICTION.

(DETAIL ADAPTED FROM TOWN OF PARKER, COLORADO AND CITY OF AURORA, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

NOTE: THE DETAILS INCLUDED WITH THIS FACT SHEET SHOW COMMONLY USED, CONVENTIONAL METHODS OF ROCK SOCK INSTALLATION IN THE DENVER METROPOLITAN AREA. THERE ARE MANY OTHER SIMILAR PROPRIETARY PRODUCTS ON THE MARKET. UDFCD NEITHER NDORSES NOR DISCOURAGES USE OF PROPRIETARY PROTECTION PRODUCTS; HOWEVER, IN THE EVENT PROPRIETARY METHODS ARE USED, THE APPROPRIATE DETAIL FROM THE MANUFACTURER MUST BE INCLUDED IN THE SWMP AND THE BMP MUST BE INSTALLED AND MAINTAINED AS SHOWN IN THE MANUFACTURER'S DETAILS.

Inlet protection consists of permeable barriers installed around an inlet to filter runoff and remove sediment prior to entering a storm drain inlet. Inlet protection can be constructed from rock socks, sediment control logs, silt fence, block and rock socks, or other materials approved by the local jurisdiction. Area inlets can also be protected by over-excavating around the inlet to form a sediment trap.

Appropriate Uses

Install protection at storm sewer inlets that are operable during construction. Consider the potential for tracked-out

Photograph IP-1. Inlet protection for a curb opening inlet.

sediment or temporary stockpile areas to contribute sediment to inlets when determining which inlets must be protected. This may include inlets in the general proximity of the construction area, not limited to downgradient inlets. Inlet protection is <u>not</u> a stand-alone BMP and should be used in conjunction with other upgradient BMPs.

Design and Installation

To function effectively, inlet protection measures must be installed to ensure that flows do not bypass the inlet protection and enter the storm drain without treatment. However, designs must also enable the inlet to function without completely blocking flows into the inlet in a manner that causes localized flooding. When selecting the type of inlet protection, consider factors such as type of inlet (e.g., curb or area, sump or on-grade conditions), traffic, anticipated flows, ability to secure the BMP properly, safety and other site-specific conditions. For example, block and rock socks will be better suited to a curb and gutter along a roadway, as opposed to silt fence or sediment control logs, which cannot be properly secured in a curb and gutter setting, but are effective area inlet protection measures.

Several inlet protection designs are provided in the Design Details. Additionally, a variety of proprietary products are available for inlet protection that may be approved for use by local governments. If proprietary products are used, design details and installation procedures from the manufacturer must be followed. Regardless of the type of inlet protection selected, inlet protection is most effective when combined with other BMPs such as curb socks and check dams. Inlet protection is often the last barrier before runoff enters the storm sewer or receiving water.

Design details with notes are provided for these forms of inlet protection:

- IP-1. Block and Rock Sock Inlet Protection for Sump or On-grade Inlets
- IP-2. Curb (Rock) Socks Upstream of Inlet Protection, On-grade Inlets

Inlet Protection (various forms)		
Functions		
Erosion Control	No	
Sediment Control	Yes	
Site/Material Management	No	

IP-3. Rock Sock Inlet Protection for Sump/Area Inlet

IP-4. Silt Fence Inlet Protection for Sump/Area Inlet

- IP-5. Over-excavation Inlet Protection
- IP-6. Straw Bale Inlet Protection for Sump/Area Inlet
- CIP-1. Culvert Inlet Protection

Propriety inlet protection devices should be installed in accordance with manufacturer specifications.

More information is provided below on selecting inlet protection for sump and on-grade locations.

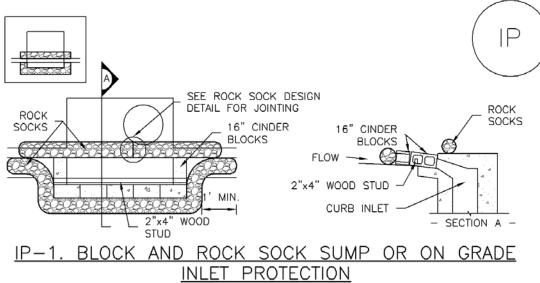
Inlets Located in a Sump

When applying inlet protection in sump conditions, it is important that the inlet continue to function during larger runoff events. For curb inlets, the maximum height of the protective barrier should be lower than the top of the curb opening to allow overflow into the inlet during larger storms without excessive localized flooding. If the inlet protection height is greater than the curb elevation, particularly if the filter becomes clogged with sediment, runoff will not enter the inlet and may bypass it, possibly causing localized flooding, public safety issues, and downstream erosion and damage from bypassed flows.

Area inlets located in a sump setting can be protected through the use of silt fence, concrete block and rock socks (on paved surfaces), sediment control logs/straw wattles embedded in the adjacent soil and stacked around the area inlet (on pervious surfaces), over-excavation around the inlet, and proprietary products providing equivalent functions.

Inlets Located on a Slope

For curb and gutter inlets on paved sloping streets, block and rock sock inlet protection is recommended in conjunction with curb socks in the gutter leading to the inlet. For inlets located along unpaved roads, also see the Check Dam Fact Sheet.

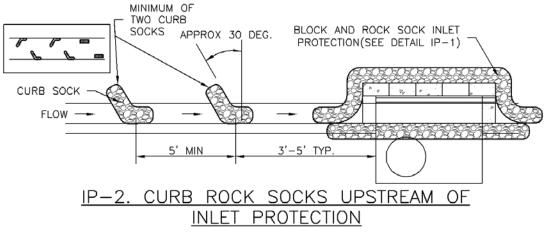

Maintenance and Removal

Inspect inlet protection frequently. Inspection and maintenance guidance includes:

- Inspect for tears that can result in sediment directly entering the inlet, as well as result in the contents of the BMP (e.g., gravel) washing into the inlet.
- Check for improper installation resulting in untreated flows bypassing the BMP and directly entering the inlet or bypassing to an unprotected downstream inlet. For example, silt fence that has not been properly trenched around the inlet can result in flows under the silt fence and directly into the inlet.
- Look for displaced BMPs that are no longer protecting the inlet. Displacement may occur following larger storm events that wash away or reposition the inlet protection. Traffic or equipment may also crush or displace the BMP.
- Monitor sediment accumulation upgradient of the inlet protection.

- Remove sediment accumulation from the area upstream of the inlet protection, as needed to maintain BMP effectiveness, typically when it reaches no more than half the storage capacity of the inlet protection. For silt fence, remove sediment when it accumulates to a depth of no more than 6 inches. Remove sediment accumulation from the area upstream of the inlet protection as needed to maintain the functionality of the BMP.
- Propriety inlet protection devices should be inspected and maintained in accordance with manufacturer specifications. If proprietary inlet insert devices are used, sediment should be removed in a timely manner to prevent devices from breaking and spilling sediment into the storm drain.

Inlet protection must be removed and properly disposed of when the drainage area for the inlet has reached final stabilization.

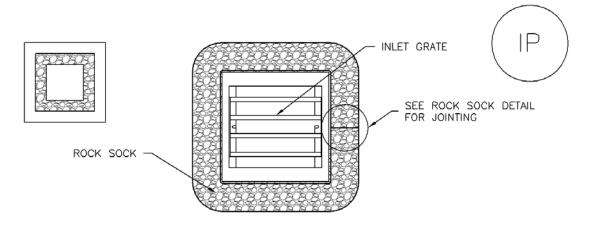


BLOCK AND CURB SOCK INLET PROTECTION INSTALLATION NOTES

1. SEE ROCK SOCK DESIGN DETAIL FOR INSTALLATION REQUIREMENTS.

2. CONCRETE "CINDER" BLOCKS SHALL BE LAID ON THEIR SIDES AROUND THE INLET IN A SINGLE ROW, ABUTTING ONE ANOTHER WITH THE OPEN END FACING AWAY FROM THE CURB.

3. GRAVEL BAGS SHALL BE PLACED AROUND CONCRETE BLOCKS, CLOSELY ABUTTING ONE ANOTHER AND JOINTED TOGETHER IN ACCORDANCE WITH ROCK SOCK DESIGN DETAIL.

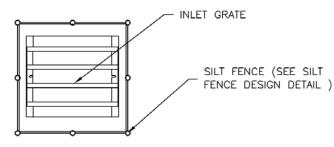


CURB ROCK SOCK INLET PROTECTION INSTALLATION NOTES

1. SEE ROCK SOCK DESIGN DETAIL INSTALLATION REQUIREMENTS.

2. PLACEMENT OF THE SOCK SHALL BE APPROXIMATELY 30 DEGREES FROM PERPENDICULAR IN THE OPPOSITE DIRECTION OF FLOW.

- 3. SOCKS ARE TO BE FLUSH WITH THE CURB AND SPACED A MINIMUM OF 5 FEET APART.
- 4. AT LEAST TWO CURB SOCKS IN SERIES ARE REQUIRED UPSTREAM OF ON-GRADE INLETS.


IP-3. ROCK SOCK SUMP/AREA INLET PROTECTION

ROCK SUCK SUMP/AREA INLET PROTECTION INSTALLATION NOTES

1. SEE ROCK SOCK DESIGN DETAIL FOR INSTALLATION REQUIREMENTS.

2. STRAW WATTLES/SEDIMENT CONTROL LOGS MAY BE USED IN PLACE OF ROCK SOCKS FOR INLETS IN PERVIOUS AREAS. INSTALL PER SEDIMENT CONTROL LOG DETAIL.

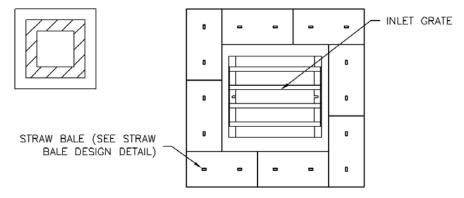
IP-4. SILT FENCE FOR SUMP INLET PROTECTION


SILT FENCE INLET PROTECTION INSTALLATION NOTES

1. SEE SILT FENCE DESIGN DETAIL FOR INSTALLATION REQUIREMENTS.

2. POSTS SHALL BE PLACED AT EACH CORNER OF THE INLET AND AROUND THE EDGES AT A MAXIMUM SPACING OF 3 FEET.

3. STRAW WATTLES/SEDIMENT CONTROL LOGS MAY BE USED IN PLACE OF SILT FENCE FOR INLETS IN PERVIOUS AREAS. INSTALL PER SEDIMENT CONTROL LOG DETAIL.

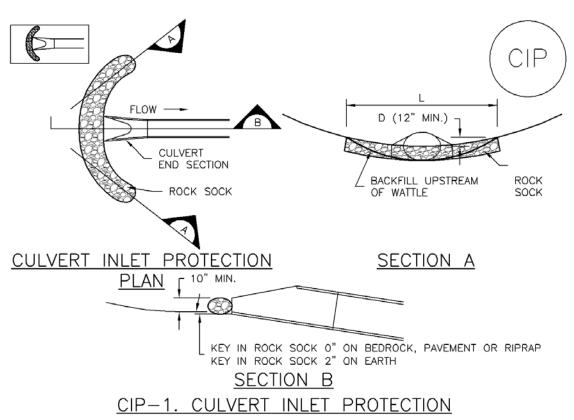


OVEREXCAVATION INLET PROTECTION INSTALLATION NOTES

1. THIS FORM OF INLET PROTECTION IS PRIMARILY APPLICABLE FOR SITES THAT HAVE NOT YET REACHED FINAL GRADE AND SHOULD BE USED ONLY FOR INLETS WITH A RELATIVELY SMALL CONTRIBUTING DRAINAGE AREA.

2. WHEN USING FOR CONCENTRATED FLOWS, SHAPE BASIN IN 2:1 RATIO WITH LENGTH ORIENTED TOWARDS DIRECTION OF FLOW.

3. SEDIMENT MUST BE PERIODICALLY REMOVED FROM THE OVEREXCAVATED AREA.



IP-6. STRAW BALE FOR SUMP INLET PROTECTION

STRAW BALE BARRIER INLET PROTECTION INSTALLATION NOTES

1. SEE STRAW BALE DESIGN DETAIL FOR INSTALLATION REQUIREMENTS.

2. BALES SHALL BE PLACED IN A SINGLE ROW AROUND THE INLET WITH ENDS OF BALES TIGHTLY ABUTTING ONE ANOTHER.

CULVERT INLET PROTECTION INSTALLATION NOTES

1. SEE PLAN VIEW FOR

-LOCATION OF CULVERT INLET PROTECTION.

2. SEE ROCK SOCK DESIGN DETAIL FOR ROCK GRADATION REQUIREMENTS AND JOINTING DETAIL.

CULVERT INLET PROTECTION MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPS HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. SEDIMENT ACCUMULATED UPSTREAM OF THE CULVERT SHALL BE REMOVED WHEN THE SEDIMENT DEPTH IS $\frac{1}{2}$ THE HEIGHT OF THE ROCK SOCK.

5. CULVERT INLET PROTECTION SHALL REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS PERMANENTLY STABILIZED AND APPROVED BY THE LOCAL JURISDICTION.

(DETAILS ADAPTED FROM AURORA, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

GENERAL INLET PROTECTION INSTALLATION NOTES

1. SEE PLAN VIEW FOR: -LOCATION OF INLET PROTECTION. -TYPE OF INLET PROTECTION (IP.1, IP.2, IP.3, IP.4, IP.5, IP.6)

2. INLET PROTECTION SHALL BE INSTALLED PROMPTLY AFTER INLET CONSTRUCTION OR PAVING IS COMPLETE (TYPICALLY WITHIN 48 HOURS). IF A RAINFALL/RUNOFF EVENT IS FORECAST, INSTALL INLET PROTECTION PRIOR TO ONSET OF EVENT.

3. MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

INLET PROTECTION MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. SEDIMENT ACCUMULATED UPSTREAM OF INLET PROTECTION SHALL BE REMOVED AS NECESSARY TO MAINTAIN BMP EFFECTIVENESS, TYPICALLY WHEN STORAGE VOLUME REACHES 50% OF CAPACITY, A DEPTH OF 6" WHEN SILT FENCE IS USED, OR ¼ OF THE HEIGHT FOR STRAW BALES.

5. INLET PROTECTION IS TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS PERMANENTLY STABILIZED, UNLESS THE LOCAL JURISDICTION APPROVES EARLIER REMOVAL OF INLET PROTECTION IN STREETS.

6. WHEN INLET PROTECTION AT AREA INLETS IS REMOVED, THE DISTURBED AREA SHALL BE COVERED WITH TOP SOIL, SEEDED AND MULCHED, OR OTHERWISE STABILIZED IN A MANNER APPROVED BY THE LOCAL JURISDICTION.

(DETAIL ADAPTED FROM TOWN OF PARKER, COLORADO AND CITY OF AURORA, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

NOTE: THE DETAILS INCLUDED WITH THIS FACT SHEET SHOW COMMONLY USED, CONVENTIONAL METHODS OF INLET PROTECTION IN THE DENVER METROPOLITAN AREA. THERE ARE MANY PROPRIETARY INLET PROTECTION METHODS ON THE MARKET. UDFCD NEITHER ENDORSES NOR DISCOURAGES USE OF PROPRIETARY INLET PROTECTION; HOWEVER, IN THE EVENT PROPRIETARY METHODS ARE USED, THE APPROPRIATE DETAIL FROM THE MANUFACTURER MUST BE INCLUDED IN THE SWMP AND THE BMP MUST BE INSTALLED AND MAINTAINED AS SHOWN IN THE MANUFACTURER'S DETAILS.

NOTE: SOME MUNICIPALITIES DISCOURAGE OR PROHIBIT THE USE OF STRAW BALES FOR INLET PROTECTION. CHECK WITH LOCAL JURISDICTION TO DETERMINE IF STRAW BALE INLET PROTECTION IS ACCEPTABLE.

A sediment basin is a temporary pond built on a construction site to capture eroded or disturbed soil transported in storm runoff prior to discharge from the site. Sediment basins are designed to capture site runoff and slowly release it to allow time for settling of sediment prior to discharge. Sediment basins are often constructed in locations that will later be modified to serve as post-construction stormwater basins.

Appropriate Uses

Most large construction sites (typically greater than 2 acres) will require one or more sediment basins for effective

Photograph SB-1. Sediment basin at the toe of a slope. Photo courtesy of WWE.

management of construction site runoff. On linear construction projects, sediment basins may be impractical; instead, sediment traps or other combinations of BMPs may be more appropriate.

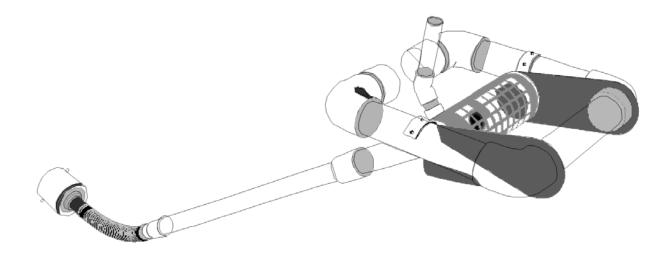
Sediment basins should not be used as stand-alone sediment controls. Erosion and other sediment controls should also be implemented upstream.

When feasible, the sediment basin should be installed in the same location where a permanent postconstruction detention pond will be located.

Design and Installation

The design procedure for a sediment basin includes these steps:

- Basin Storage Volume: Provide a storage volume of at least 3,600 cubic feet per acre of drainage area. To the extent practical, undisturbed and/or off-site areas should be diverted around sediment basins to prevent "clean" runoff from mixing with runoff from disturbed areas. For undisturbed areas (both on-site and off-site) that cannot be diverted around the sediment basin, provide a minimum of 500 ft³/acre of storage for undeveloped (but stable) off-site areas in addition to the 3,600 ft³/acre for disturbed areas. For stable, developed areas that cannot be diverted around the sediment basin, storage volume requirements are summarized in Table SB-1.
- Basin Geometry: Design basin with a minimum length-to-width ratio of 2:1 (L:W). If this cannot be achieved because of site space constraints, baffling may be required to extend the effective distance between the inflow point(s) and the outlet to minimize short-circuiting.
 Sediment Basins
- **Dam Embankment**: It is recommended that embankment slopes be 4:1 (H:V) or flatter and no steeper than 3:1 (H:V) in any location.


Sediment Basins		
Functions		
Erosion Control	No	
Sediment Control	Yes	
Site/Material Management	No	

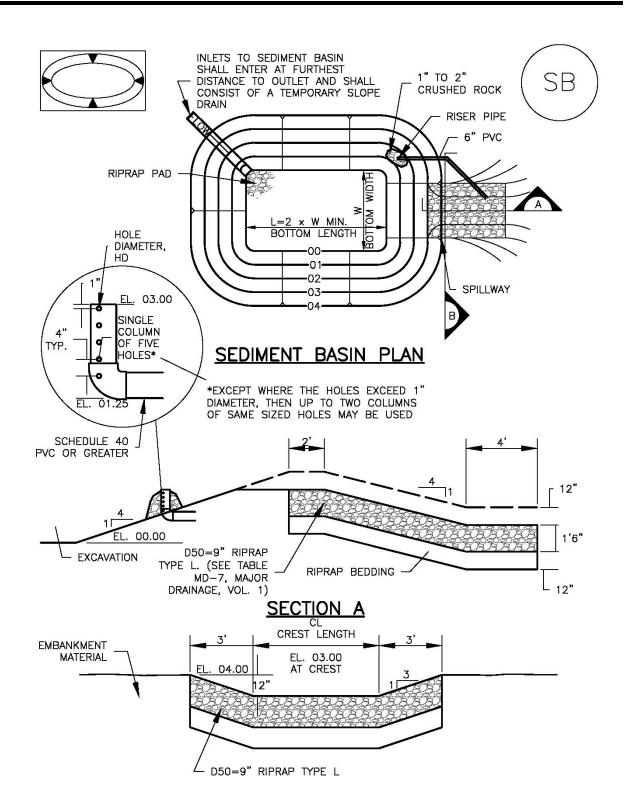
• **Inflow Structure**: For concentrated flow entering the basin, provide energy dissipation at the point of inflow.

Imperviousness (%)	Additional Storage Volume (ft ³) Per Acre of Tributary Area	
Undeveloped	500	
10	800	
20	1230	
30	1600	
40	2030	
50	2470	
60	2980	
70	3560	
80	4360	
90	5300	
100	6460	

Table SB-1. Additional Volume Requirements for Undisturbed and Developed Tributary Areas Draining through Sediment Basins

- **Outlet Works**: The outlet pipe shall extend through the embankment at a minimum slope of 0.5 percent. Outlet works can be designed using one of the following approaches:
 - **Riser Pipe (Simplified Detail):** Detail SB-1 provides a simplified design for basins treating no more than 15 acres.
 - **Orifice Plate or Riser Pipe**: Follow the design criteria for Full Spectrum Detention outlets in the EDB Fact Sheet provided in Chapter 4 of this manual for sizing of outlet perforations with an emptying time of approximately 72 hours. In lieu of the trash rack, pack uniformly sized 1¹/₂ to 2-inch gravel in front of the plate or surrounding the riser pipe. This gravel will need to be cleaned out frequently during the construction period as sediment accumulates within it. The gravel pack will need to be removed and disposed of following construction to reclaim the basin for use as a permanent detention facility. If the basin will be used as a permanent extended detention basin for the site, a trash rack will need to be installed once contributing drainage areas have been stabilized and the gravel pack and accumulated sediment have been removed.
 - Floating Skimmer: If a floating skimmer is used, install it using manufacturer's recommendations. Illustration SB-1 provides an illustration of a Faircloth Skimmer Floating OutletTM, one of the more commonly used floating skimmer outlets. A skimmer should be designed to release the design volume in no less than 48 hours. The use of a floating skimmer outlet can increase the sediment capture efficiency of a basin significantly. A floating outlet continually decants cleanest water off the surface of the pond and releases cleaner water than would discharge from a perforated riser pipe or plate.

Illustration SB-1. Outlet structure for a temporary sediment basin - Faircloth Skimmer Floating Outlet. Illustration courtesy of J. W. Faircloth & Sons, Inc., FairclothSkimmer.com.


- **Outlet Protection and Spillway:** Consider all flow paths for runoff leaving the basin, including protection at the typical point of discharge as well as overtopping.
 - **Outlet Protection:** Outlet protection should be provided where the velocity of flow will exceed the maximum permissible velocity of the material of the waterway into which discharge occurs. This may require the use of a riprap apron at the outlet location and/or other measures to keep the waterway from eroding.
 - **Emergency Spillway:** Provide a stabilized emergency overflow spillway for rainstorms that exceed the capacity of the sediment basin volume and its outlet. Protect basin embankments from erosion and overtopping. If the sediment basin will be converted to a permanent detention basin, design and construct the emergency spillway(s) as required for the permanent facility. If the sediment basin will not become a permanent detention basin, it may be possible to substitute a heavy polyvinyl membrane or properly bedded rock cover to line the spillway and downstream embankment, depending on the height, slope, and width of the embankments.

Maintenance and Removal

Maintenance activities include the following:

- Dredge sediment from the basin, as needed to maintain BMP effectiveness, typically when the design storage volume is no more than one-third filled with sediment.
- Inspect the sediment basin embankments for stability and seepage.
- Inspect the inlet and outlet of the basin, repair damage, and remove debris. Remove, clean and replace the gravel around the outlet on a regular basis to remove the accumulated sediment within it and keep the outlet functioning.
- Be aware that removal of a sediment basin may require dewatering and associated permit requirements.
- Do not remove a sediment basin until the upstream area has been stabilized with vegetation.

Final disposition of the sediment basin depends on whether the basin will be converted to a permanent post-construction stormwater basin or whether the basin area will be returned to grade. For basins being converted to permanent detention basins, remove accumulated sediment and reconfigure the basin and outlet to meet the requirements of the final design for the detention facility. If the sediment basin is not to be used as a permanent detention facility, fill the excavated area with soil and stabilize with vegetation.

TABLE SB-1. SIZING INFORMATION FOR STANDARD SEDIMENT BASIN			
Upstream Drainage Area (rounded to nearest acre), (ac)	Basin Bottom Width (W), (ft)	Spillway Crest Length (CL), (ft)	Hole Diameter (HD), (in)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	12 ½ 21 28 33 ½ 43 47 ¼ 51 55 58 ¼ 61 64 67 ½ 70 ½ 73 ¼	2 3 5 6 8 9 11 12 13 15 16 18 19 21 22	932 13/6 12 9%6 21/32 25/32 25/32 27/32 27/32 78 15/6 31/36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

SEDIMENT BASIN INSTALLATION NOTES

- 1. SEE PLAN VIEW FOR:
 - -LOCATION OF SEDIMENT BASIN.

-TYPE OF BASIN (STANDARD BASIN OR NONSTANDARD BASIN).

-FOR STANDARD BASIN, BOTTOM WIDTH W, CREST LENGTH CL, AND HOLE DIAMETER, HD.

-FOR NONSTANDARD BASIN, SEE CONSTRUCTION DRAWINGS FOR DESIGN OF BASIN INCLUDING RISER HEIGHT H, NUMBER OF COLUMNS N, HOLE DIAMETER HD AND PIPE DIAMETER D.

2. FOR STANDARD BASIN, BOTTOM DIMENSION MAY BE MODIFIED AS LONG AS BOTTOM AREA IS NOT REDUCED.

3. SEDIMENT BASINS SHALL BE INSTALLED PRIOR TO ANY OTHER LAND-DISTURBING ACTIVITY THAT RELIES ON ON BASINS AS AS A STORMWATER CONTROL.

4. EMBANKMENT MATERIAL SHALL CONSIST OF SOIL FREE OF DEBRIS, ORGANIC MATERIAL, AND ROCKS OR CONCRETE GREATER THAN 3 INCHES AND SHALL HAVE A MINIMUM OF 15 PERCENT BY WEIGHT PASSING THE NO. 200 SIEVE.

5. EMBANKMENT MATERIAL SHALL BE COMPACTED TO AT LEAST 95 PERCENT OF MAXIMUM DENSITY IN ACCORDANCE WITH ASTM D698.

6. PIPE SCH 40 OR GREATER SHALL BE USED.

7. THE DETAILS SHOWN ON THESE SHEETS PERTAIN TO STANDARD SEDIMENT BASIN(S) FOR DRAINAGE AREAS LESS THAN 15 ACRES. SEE CONSTRUCTION DRAWINGS FOR EMBANKMENT, STORAGE VOLUME, SPILLWAY, OUTLET, AND OUTLET PROTECTION DETAILS FOR ANY SEDIMENT BASIN(S) THAT HAVE BEEN INDIVIDUALLY DESIGNED FOR DRAINAGE AREAS LARGER THAN 15 ACRES.

SEDIMENT BASIN MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. SEDIMENT ACCUMULATED IN BASIN SHALL BE REMOVED AS NEEDED TO MAINTAIN BMP EFFECTIVENESS, TYPICALLY WHEN SEDIMENT DEPTH REACHES ONE FOOT (I.E., TWO FEET BELOW THE SPILLWAY CREST).

5. SEDIMENT BASINS ARE TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND GRASS COVER IS ACCEPTED BY THE LOCAL JURISDICTION.

6. WHEN SEDIMENT BASINS ARE REMOVED, ALL DISTURBED AREAS SHALL BE COVERED WITH TOPSOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED AS APPROVED BY LOCAL JURISDICTION.

(DETAILS ADAPTED FROM DOUGLAS COUNTY, COLORADO)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

Sediment traps are formed by excavating an area or by placing an earthen embankment across a low area or drainage swale. Sediment traps are designed to capture drainage from disturbed areas less than one acre and allow settling of sediment.

Appropriate Uses

Sediment traps can be used in combination with other layers of erosion and sediment controls to trap sediment from small drainage areas (less than one

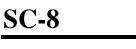
Photograph ST-1. Sediment traps are used to collect sediment-laden runoff from disturbed area. Photo courtesy of EPA Menu of BMPs.

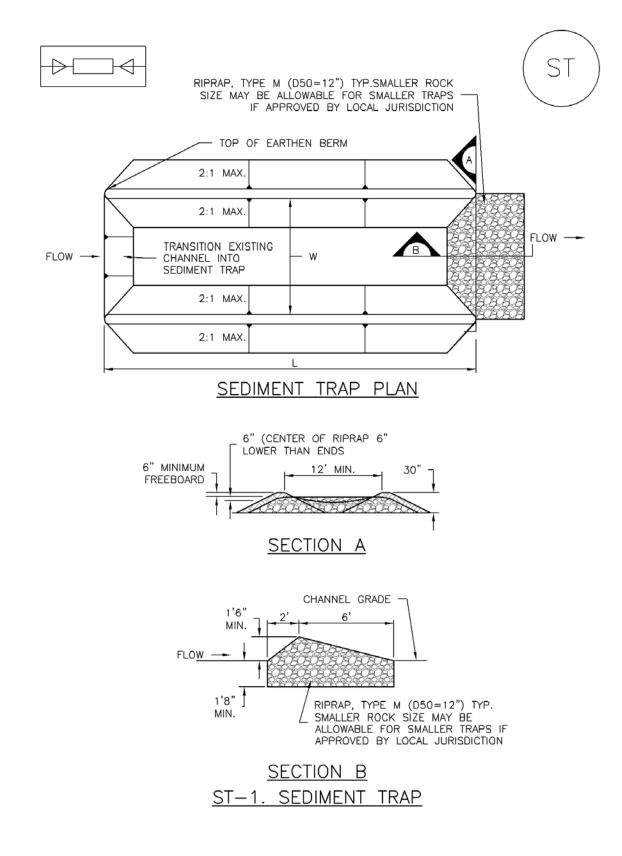
acre) or areas with localized high sediment loading. For example, sediment traps are often provided in conjunction with vehicle tracking controls and wheel wash facilities.

Design and Installation

A sediment trap consists of a small excavated basin with an earthen berm and a riprap outlet. The berm of the sediment trap may be constructed from the excavated material and must be compacted to 95 percent of the maximum density in accordance with ASTM D698. An overflow outlet must be provided at an elevation at least 6 inches below the top of the berm. See Detail ST-1 for additional design and installation information.

Maintenance and Removal


Inspect the sediment trap embankments for stability and seepage.


Remove accumulated sediment as needed to maintain the effectiveness of the sediment trap, typically when the sediment depth is approximately one-half the height of the outflow embankment.

Inspect the outlet for debris and damage. Repair damage to the outlet, and remove all obstructions.

A sediment trap should not be removed until the upstream area is sufficiently stabilized. Upon removal of the trap, the disturbed area should be covered with topsoil and stabilized.

Sediment Trap		
Functions		
Erosion Control	No	
Sediment Control	Yes	
Site/Material Management	No	

- 1. SEE PLAN VIEW FOR: -LOCATION, LENGTH AND WIDTH OF SEDIMENT TRAP.
- 2. ONLY USE FOR DRAINAGE AREAS LESS THAN 1 ACRE.

3. SEDIMENT TRAPS SHALL BE INSTALLED PRIOR TO ANY UPGRADIENT LAND-DISTURBING ACTIVITIES.

4. SEDIMENT TRAP BERM SHALL BE CONSTRUCTED FROM MATERIAL FROM EXCAVATION. THE BERM SHALL BE COMPACTED TO 95% OF THE MAXIMUM DENSITY IN ACCORDANCE WITH ASTM D698.

5. SEDIMENT TRAP OUTLET TO BE CONSTRUCTED OF RIPRAP, TYPE M (D50=12") TYP.SMALLER ROCK SIZE MAY BE ALLOWABLE FOR SMALLER TRAPS IF APPROVED BY LOCAL JURISDICTION.

6. THE TOP OF THE EARTHEN BERM SHALL BE A MINIMUM OF 6" HIGHER THAN THE TOP OF THE RIPRAP OUTLET STRUCTURE.

7. THE ENDS OF THE RIPRAP OUTLET STRUCTURE SHALL BE A MINIMUM OF 6" HIGHER THAN THE CENTER OF THE OUTLET STRUCTURE.

SEDIMENT TRAP MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. REMOVE SEDIMENT ACCUMULATED IN TRAP AS NEEDED TO MAINTAIN THE FUNCTIONALITY OF THE BMP, TYPICALLY WHEN THE SEDIMENT DEPTH REACHES $\frac{1}{2}$ THE HEIGHT OF THE RIPRAP OUTLET.

5. SEDIMENT TRAPS SHALL REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND APPROVED BY THE LOCAL JURISDICTION.

6. WHEN SEDIMENT TRAPS ARE REMOVED, THE DISTURBED AREA SHALL BE COVERED WITH TOPSOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED IN A MANNER APPROVED BY THE LOCAL JURISDICTION.

(DETAILS ADAPTED FROM DOUGLAS COUNTY, COLORADO, NOT AVAILABLE IN AUTOCAD)

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

Buffer strips of preserved natural vegetation or grass help protect waterways and wetlands from land disturbing activities. Vegetated buffers improve stormwater runoff quality by straining sediment, promoting infiltration, and slowing runoff velocities.

Appropriate Uses

Vegetated buffers can be used to separate land disturbing activities and natural surface waters or conveyances. In many jurisdictions, local governments

Photograph VB-1. A vegetated buffer is maintained between the area of active construction and the drainage swale. Photo courtesy of WWE.

require some type of setback from natural waterways. Concentrated flow should not be directed through a buffer; instead, runoff should be in the form of sheet flow. Vegetated buffers are typically used in combination with other perimeter control BMPs such as sediment control logs or silt fence for multi-layered protection.

Design and Installation

Minimum buffer widths may vary based on local regulations. Clearly delineate the boundary of the natural buffer area using construction fencing, silt fence, or a comparable technique. In areas that have been cleared and graded, vegetated buffers such as sod can also be installed to create or restore a vegetated buffer around the perimeter of the site.

Maintenance and Removal

Inspect buffer areas for signs of erosion such as gullies or rills. Stabilize eroding areas, as needed. If erosion is due to concentrated flow conditions, it may be necessary to install a level spreader or other technique to restore sheet flow conditions. Inspect perimeter controls delineating the vegetative buffer and repair or replace as needed.

Vegetated Buffers		
Functions		
Erosion Control	Moderate	
Sediment Control	Yes	
Site/Material Management	Yes	

Filter Berm (FB)

(from the Encana Stormwater Manual of Best Management Practices - Draft 2010)

Description

A filter berm is a temporary ridge made up of natural materials that already occur on the project site such. Slash filter berms use small tree branches, root mats, grass, leaves, stone, or other debris or material naturally available or left over from site clearing and grubbing. Rock filter berms use site gravel, stone, or rock. Both types of filter berms are placed along a level contour to slow, filter, and divert flow and act as an efficient form of sediment control. In some configurations, filter berms are covered with a filter cloth to stabilize the structure and improve barrier efficiency.

Applicability

The drainage area for filter berms must be no greater than 2 acres. In addition, the drainage slope leading down to a filter berm must be no greater than 2:1 and no longer than 100 feet. The following are suitable applications:

- 5 to 7 feet beyond the toe of slopes.
- Along the site perimeter.
- Along streams and channels, or adjacent to roadways.
- Around temporary spoil areas or other small cleared areas.

Limitations

- Intended to be used only in gently sloping areas, and are not appropriate for high-velocity flow areas.
- Slash filter berms have limited usefulness because they are constructed of materials that decompose.
- A large amount of material is needed to construct a useful filter berm. Therefore, filter berms are only applicable to sites where there is enough slash material from clearing and grubbing or rock material to form a sufficiently sized berm.
- May be difficult to remove after construction.

Design criteria

No formal design is required.

Construction specifications

Minor deviations from the following construction specifications are acceptable as long as performance oriented specifications are maintained. The performance oriented specification for filter berms is that sediment is not observed on the down gradient side of the berm. If sediment is observed on the down gradient side of the berm, the filter berm should be maintained or re-installed.

Slash filter berms

See Figure FB-1 for installation details.

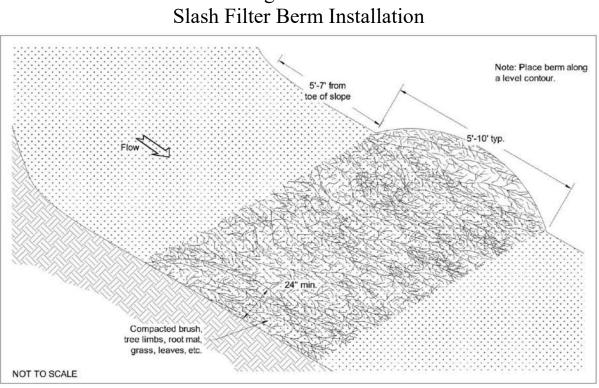
- 1. Place material cleared from the site across the slope or swale. Material with a diameter larger than 6 inches should not be used.
- 2. Cut up brush if necessary and compact to avoid large voids within the barrier.
- 3. The barrier mound should be at least 2 feet high and 5 feet wide at its base.
- 4. It is recommended, but not required, that the mound be covered with a filter fabric barrier to hold the material in place and increase sediment barrier efficiency. If using a filter fabric cover, bury the edge in a trench 4 inches deep and 6 inches wide on the drainage side of the barrier. This is done to secure the fabric and create a barrier to sediment while allowing stormwater to pass through the water-permeable filter fabric. The fabric should be extended just over the peak of the brush mound and secured on the down-slope edge of the fabric by fastening it to twine or small diameter rope that is staked securely.

Rock filter berms

See Figure FB-2 for installation details.

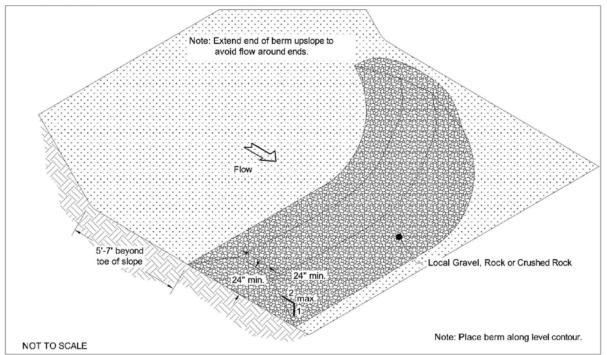
- 1. Place filter berm along a level contour. Use well-graded, angular site gravel or crushed rock of medium to large diameter with larger rocks on the bottom.
- If desired, cover with geotextile fabric or wire screen (especially if concentrated flows are expected) to help keep berm in tack. Anchor fabric or wire by placing under the berm or use stakes.
- 3. Trenching is not required.
- 4. Berms should be spaced according to the steepness of the slope, with berms spaced closer together as the slope increases.

Maintenance considerations


The frequency of inspections should be in accordance with the SWMP or PCSWMP. If channels form through void spaces in the barrier, the barrier should be reconstructed to eliminate the channels. Ensure that sediment has not built up and that no damage has been done by vehicles. Regular inspection should indicate the frequency of sediment removal needed. Accumulated sediment should be removed from the uphill side of the barrier when sediment height reaches between 1/3 and 1/2 the height of the barrier. Sediment should be disposed of and the filter material and/or fabric should be replaced if necessary. It is important that repairs be performed at the first sign of deterioration to ensure that the berm is functioning properly.

Removal/Abandonment

Filter berms may be removed after uphill drainage areas are stabilized. Rock and brush may also be left in place only if it does not cause any landscaping problems. Remove all manmade materials (wire, fabric, and/or stakes).


References

- Environmental Protection Agency (EPA), National Pollutant Discharge Elimination System (NPDES). Construction Site Storm Water Runoff Control. Washington, D.C., February, 2003. http://cfpub.epa.gov/npdes/stormwater/menuofbmps/con site.cfm>
- 2. Horizon Environmental Services, Inc, Guidance Document Reasonable and Prudent Practices for Stabilization (RAPPS) of Oil and Gas Construction Sites. April 2004.

Figure FB-1

Figure FB-2 Rock Filter Berm Installation

DANDY CURB BAG® CURB AND GUTTER INLET/GRATE PROTECTION SYSTEM GUIDE SPECIFICATION

PRODUCT:

DANDY CURB BAG®

MANUFACTURER:

Dandy Products, Inc. P.O. Box 1980 Westerville, Ohio 43086 Phone: 800-591-2284 Fax: 740-881-2791 E-mail <u>dlc@dandyproducts.com</u> Web www.dandyproducts.com

1.0 **Description:**

1.1 Work covered under this item consists of installing a Dandy Curb Bag® curb and gutter inlet protection system. The purpose is to keep silt, sediment and construction debris out of the storm water system.

2.0 Material:

- 2.1 The Dandy Curb Bag® curb and gutter inlet protection unit shall be a **sewn in the U.S.A.** geotextile fabric unit enclosing a porous structure in the form of a cylindrical tube placed in front of and extending beyond the inlet opening on both sides and have a geotextile fabric envelope fitted to the individual grate(s) on the street side of the sewn unit for grate(s) to be inserted and to completely enclose the grate(s).
- 2.2 The Dandy Curb Bag® shall have lifting devices to allow manual inspection of the storm water system.
- 2.3 The Dandy Curb Bag® unit shall utilize an orange monofilament fabric that is manufactured in the U.S.A. with the following characteristics:

PROPERTY	TEST METHOD	UNITS	TEST RESULTS
Grab Tensile Strength	ASTM D 4632	lbs	450 x 300
Grab Tensile Elongation	ASTM D 4632	%	40 x 25
Puncture Strength	ASTM D 4833	lbs	130
Mullen Burst Strength	ASTM D 3786	psi	600
Trapezoid Tear Strength	ASTM D 4533	lbs	165 x 150
% Open Area (POA)	COE - 22125-86	%	28
Apparent Opening Size	ASTM D 4751	US Std Sieve	30
Permittivity	ASTM D 4491	sec ¹	3.5

Permeability	ASTM 4491	cm/sec	0.25
Water Flow Rate	ASTM 4491	gal/min/ft ²	250
Ultraviolet Resistance	ASTM D 4355	%	70
Color			Orange ¹

¹The color orange is a trademark of Dandy Products, Inc.

The property values listed above are effective October 2010 and are subject to change without notice.

3.0 Installation:

- 3.1 Place the empty Dandy Curb Bag® unit over the grate as the grate stands on end.
- 3.2 For oil and sediment model; to install or replace absorbent, place absorbent pillow in pouch, on the bottom (below-grade side) of the unit.
- 3.3 Tuck the enclosure flap inside to completely enclose the grate.
- 3.4 Holding the lifting devices, being careful not to damage the sewn fabric unit, insert the grate into its frame, street side edge first, then lower back edge with cylindrical tube into place. The cylindrical tube should be partially blocking the curb hood opening when installed properly.

4.0 Maintenance:

- 4.1 The contractor shall remove all accumulated sediment and debris from surface and vicinity of unit after each rain event or as directed by engineer/inspector. Dispose of unit no longer in use at an appropriate recycling or solid waste facility.
- 4.2 For oil and sediment model; remove and replace absorbent when near saturation.

5.0 Method of Measurement:

5.1 The quantity to be paid is for the actual number of Dandy Curb Bag® inlet protection units installed

6.0 Basis of payment:

- 6.1 The unit price shall include labor, equipment, and materials necessary to complete the work and maintain the Dandy Curb Bag® inlet protection units.
- 6.2 Payment for the completed work will be made at the contract prices for:

ITEM	UNIT	DESCRIPT	ION
Dandy Curb Bag®	EA	Curb Inlet Protection Unit	
		(#	Inlet)

Effective construction site management to minimize erosion and sediment transport includes attention to construction phasing, scheduling, and sequencing of land disturbing activities. On most construction projects, erosion and sediment controls will need to be adjusted as the project progresses and should be documented in the SWMP.

Construction phasing refers to disturbing only part of a site at a time to limit the potential for erosion from dormant parts of a site. Grading activities and construction are completed and soils are effectively stabilized on one part of a site before grading and

Photograph CP-1. Construction phasing to avoid disturbing the entire area at one time. Photo courtesy of WWE.

construction begins on another portion of the site.

Construction sequencing or scheduling refers to a specified work schedule that coordinates the timing of land disturbing activities and the installation of erosion and sediment control practices.

Appropriate Uses

All construction projects can benefit from upfront planning to phase and sequence construction activities to minimize the extent and duration of disturbance. Larger projects and linear construction projects may benefit most from construction sequencing or phasing, but even small projects can benefit from construction sequencing that minimizes the duration of disturbance.

Typically, erosion and sediment controls needed at a site will change as a site progresses through the major phases of construction. Erosion and sediment control practices corresponding to each phase of construction must be documented in the SWMP.

Design and Installation

BMPs appropriate to the major phases of development should be identified on construction drawings. In some cases, it will be necessary to provide several drawings showing construction-phase BMPs placed according to stages of development (e.g., clearing and grading, utility installation, active construction, final stabilization). Some municipalities in the Denver area set maximum sizes for disturbed area associated with phases of a construction project. Additionally, requirements for phased construction drawings vary among local governments within the UDFCD boundary. Some local governments require

separate erosion and sediment control drawings for initial BMPs, interim conditions (in active construction), and final stabilization.

Construction Scheduling		
Functions		
Erosion Control	Moderate	
Sediment Control	Moderate	
Site/Material Management	Yes	

Typical construction phasing BMPs include:

- Limit the amount of disturbed area at any given time on a site to the extent practical. For example, a 100-acre subdivision might be constructed in five phases of 20 acres each.
- If there is carryover of stockpiled material from one phase to the next, position carryover material in a location easily accessible for the pending phase that will not require disturbance of stabilized areas to access the stockpile. Particularly with regard to efforts to balance cut and fill at a site, careful planning for location of stockpiles is important.

Typical construction sequencing BMPs include:

- Sequence construction activities to minimize duration of soil disturbance and exposure. For example, when multiple utilities will occupy the same trench, schedule installation so that the trench does not have to be closed and opened multiple times.
- Schedule site stabilization activities (e.g., landscaping, seeding and mulching, installation of erosion control blankets) as soon as feasible following grading.
- Install initial erosion and sediment control practices before construction begins. Promptly install additional BMPs for inlet protection, stabilization, etc., as construction activities are completed.

Table CP-1 provides typical sequencing of construction activities and associated BMPs.

Maintenance and Removal

When the construction schedule is altered, erosion and sediment control measures in the SWMP and construction drawings should be appropriately adjusted to reflect actual "on the ground" conditions at the construction site. Be aware that changes in construction schedules can have significant implications for site stabilization, particularly with regard to establishment of vegetative cover.

Project Phase	BMPs
d	 Install sediment controls downgradient of access point (on paved streets this may consist of inlet protection).
	• Establish vehicle tracking control at entrances to paved streets. Fence as needed.
	 Use construction fencing to define the boundaries of the project and limit access to areas of the site that are not to be disturbed.
	Note: it may be necessary to protect inlets in the general vicinity of the site, even if not downgradient, if there is a possibility that sediment tracked from the site could contribute to the inlets.
Site Clearing and Grubbing	 Install perimeter controls as needed on downgradient perimeter of site (silt fence, wattles, etc).
	 Limit disturbance to those areas planned for disturbance and protect undisturbed areas within the site (construction fence, flagging, etc).
	 Preserve vegetative buffer at site perimeter.
	 Create stabilized staging area.
	 Locate portable toilets on flat surfaces away from drainage paths. Stake in areas susceptible to high winds.
	 Construct concrete washout area and provide signage.
	 Establish waste disposal areas.
	 Install sediment basins.
	• Create dirt perimeter berms and/or brush barriers during grubbing and clearing.
	 Separate and stockpile topsoil, leave roughened and/or cover.
	 Protect stockpiles with perimeter control BMPs. Stockpiles should be located away from drainage paths and should be accessed from the upgradient side so that perimeter controls can remain in place on the downgradient side. Use erosion control blankets, temporary seeding, and/or mulch for stockpiles that will be inactive for an extended period.
	 Leave disturbed area of site in a roughened condition to limit erosion. Consider temporary revegetation for areas of the site that have been disturbed but that will be inactive for an extended period.
	• Water to minimize dust but not to the point that watering creates runoff.

Table CP-1. Typical Phased BMP Installation for Construction Projects

Project Phase	BMPs
	In Addition to the Above BMPs:
Utility And Infrastructure Installation	• Close trench as soon as possible (generally at the end of the day).
	• Use rough-cut street control or apply road base for streets that will not be promptly paved.
	 Provide inlet protection as streets are paved and inlets are constructed.
	 Protect and repair BMPs, as necessary.
	 Perform street sweeping as needed.
Building Construction	In Addition to the Above BMPs:
	 Implement materials management and good housekeeping practices for home building activities.
	• Use perimeter controls for temporary stockpiles from foundation excavations.
	 For lots adjacent to streets, lot-line perimeter controls may be necessary at the back of curb.
	In Addition to the Above BMPs:
Final Grading	• Remove excess or waste materials.
	Remove stored materials.
	In Addition to the Above BMPs:
Final Stabilization	 Seed and mulch/tackify.
	 Seed and install blankets on steep slopes.
	• Remove all temporary BMPs when site has reached final stabilization.

Protection of existing vegetation on a construction site can be accomplished through installation of a construction fence around the area requiring protection. In cases where upgradient areas are disturbed, it may also be necessary to install perimeter controls to minimize sediment loading to sensitive areas such as wetlands. Existing vegetation may be designated for protection to maintain a stable surface cover as part of construction phasing, or vegetation may be protected in areas designated to remain in natural condition under post-development conditions (e.g., wetlands, mature trees, riparian areas, open space).

Photograph PV-1. Protection of existing vegetation and a sensitive area. Photo courtesy of CDOT.

Appropriate Uses

Existing vegetation should be preserved for the maximum practical duration on a construction site through the use of effective construction phasing. Preserving vegetation helps to minimize erosion and can reduce revegetation costs following construction.

Protection of wetland areas is required under the Clean Water Act, unless a permit has been obtained from the U.S. Army Corps of Engineers (USACE) allowing impacts in limited areas.

If trees are to be protected as part of post-development landscaping, care must be taken to avoid several types of damage, some of which may not be apparent at the time of injury. Potential sources of injury include soil compaction during grading or due to construction traffic, direct equipment-related injury such as bark removal, branch breakage, surface grading and trenching, and soil cut and fill. In order to minimize injuries that may lead to immediate or later death of the tree, tree protection zones should be developed during site design, implemented at the beginning of a construction project, as well as continued during active construction.

Design and Installation

General

Once an area has been designated as a preservation area, there should be no construction activity allowed within a set distance of the area. Clearly mark the area with construction fencing. Do not allow

stockpiles, equipment, trailers or parking within the protected area. Guidelines to protect various types of existing vegetation follow.

Protection of Existing Vegetation		
Functions		
Erosion Control	Yes	
Sediment Control	Moderate	
Site/Material Management	Yes	

Surface Cover During Phased Construction

Install construction fencing or other perimeter controls around areas to be protected from clearing and grading as part of construction phasing.

Maintaining surface cover on steep slopes for the maximum practical duration during construction is recommended.

Open Space Preservation

Where natural open space areas will be preserved as part of a development, it is important to install construction fencing around these areas to protect them from compaction. This is particularly important when areas with soils with high infiltration rates are preserved as part of LID designs. Preserved open space areas should not be used for staging and equipment storage.

Wetlands and Riparian Areas

Install a construction fence around the perimeter of the wetland or riparian (streamside vegetation) area to prevent access by equipment. In areas downgradient of disturbed areas, install a perimeter control such as silt fence, sediment control logs, or similar measure to minimize sediment loading to the wetland.

Tree Protection¹

Before beginning construction operations, establish a tree protection zone around trees to be
preserved by installing construction fences. Allow enough space from the trunk to protect the root
zone from soil compaction and mechanical damage, and the branches from mechanical damage (see
Table PV-1). If low branches will be kept, place the fence outside of the drip line. Where this is not
possible, place fencing as far away from the trunk as possible. In order to maintain a healthy tree, be
aware that about 60 percent of the tree's root zone extends beyond the drip line.

Table PV-1 Guidelines for Determining the Tree Protection Zone Mathema and Clarks 100% as aird in Conservation and WWE 20

(Source: Matheny and Clark, 1998; as cited in GreenCO and WWE 2008)

	Distance from Trunk (ft) per inch of DBH		
Species Tolerance to Damage	Young	Mature	Over mature
Good	0.5'	0.75'	1.0'
Moderate	0.75'	1.0'	1.25'
Poor	1.0'	1.25'	1.5'
Notes: DBH = diameter at breast height (4.5 ft above grade); Young = $<20\%$ of life expectancy; Mature = 20%-80% of life expectancy; Over mature =>80% of life expectancy			

• Most tree roots grow within the top 12 to 18 inches of soil. Grade changes within the tree protection zone should be avoided where possible because seemingly minor grade changes can either smother

¹ Tree Protection guidelines adapted from GreenCO and WWE (2008). *Green Industry Best Management Practices (BMPs) for the Conservation and Protection of Water Resources in Colorado: Moving Toward Sustainability, Third Release.* See <u>www.greenco.org</u> for more detailed guidance on tree preservation.

roots (in fill situations) or damage roots (in cut situations). Consider small walls where needed to avoid grade changes in the tree protection zone.

- Place and maintain a layer of mulch 4 to 6-inch thick from the tree trunk to the fencing, keeping a 6-inch space between the mulch and the trunk. Mulch helps to preserve moisture and decrease soil compaction if construction traffic is unavoidable. When planting operations are completed, the mulch may be reused throughout planting areas.
- Limit access, if needed at all, and appoint one route as the main entrance and exit to the tree
 protection zone. Within the tree protection zone, do not allow any equipment to be stored, chemicals
 to be dumped, or construction activities to take place except fine grading, irrigation system
 installation, and planting operations. These activities should be conducted in consultation with a
 landscaping professional, following Green Industry BMPs.
- Be aware that soil compaction can cause extreme damage to tree health that may appear gradually over a period of years. Soil compaction is easier to prevent than repair.

Maintenance and Removal

Repair or replace damaged or displaced fencing or other protective barriers around the vegetated area.

If damage occurs to a tree, consult an arborist for guidance on how to care for the tree. If a tree in a designated preservation area is damaged beyond repair, remove and replace with a 2-inch diameter tree of the same or similar species.

Construction equipment must not enter a wetland area, except as permitted by the U.S. Army Corps of Engineers (USACE). Inadvertent placement of fill in a wetland is a 404 permit violation and will require notification of the USACE.

If damage to vegetation occurs in a protected area, reseed the area with the same or similar species, following the recommendations in the USDCM *Revegetation* chapter.

A construction fence restricts site access to designated entrances and exits, delineates construction site boundaries, and keeps construction out of sensitive areas such as natural areas to be preserved as open space, wetlands and riparian areas.

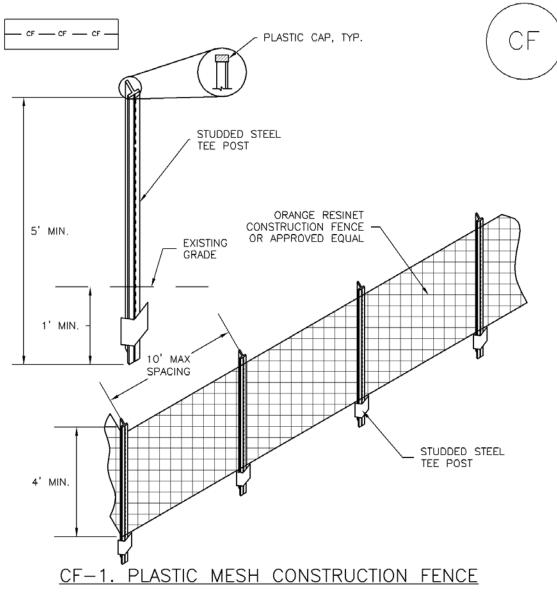
Appropriate Uses

A construction fence can be used to delineate the site perimeter and locations within the site where access is restricted to protect natural resources such as wetlands, waterbodies, trees, and other natural areas of the site that should not be disturbed.

Photograph CF-1. A construction fence helps delineate areas where existing vegetation is being protected. Photo courtesy of Douglas County.

If natural resource protection is an objective, then the construction fencing should be used in combination with other perimeter control BMPs such as silt fence, sediment control logs or similar measures.

Design and Installation


Construction fencing may be chain link or plastic mesh and should be installed following manufacturer's recommendations. See Detail CF-1 for typical installations.

Do not place construction fencing in areas within work limits of machinery.

Maintenance and Removal

- Inspect fences for damage; repair or replace as necessary.
- Fencing should be tight and any areas with slumping or fallen posts should be reinstalled.
- Fencing should be removed once construction is complete.

Construction Fence		
Functions		
Erosion Control	No	
Sediment Control	No	
Site/Material Management	Yes	

CONSTRUCTION FENCE INSTALLATION NOTES

1. SEE PLAN VIEW FOR:

-LOCATION OF CONSTRUCTION FENCE.

2. CONSTRUCTION FENCE SHOWN SHALL BE INSTALLED PRIOR TO ANY LAND DISTURBING ACTIVITIES.

3. CONSTRUCTION FENCE SHALL BE COMPOSED OF ORANGE, CONTRACTOR-GRADE MATERIAL THAT IS AT LEAST 4' HIGH. METAL POSTS SHOULD HAVE A PLASTIC CAP FOR SAFETY.

4. STUDDED STEEL TEE POSTS SHALL BE UTILIZED TO SUPPORT THE CONSTRUCTION FENCE. MAXIMUM SPACING FOR STEEL TEE POSTS SHALL BE 10'.

5. CONSTRUCTION FENCE SHALL BE SECURELY FASTENED TO THE TOP, MIDDLE, AND BOTTOM OF EACH POST.

CONSTRUCTION FENCE MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. CONSTRUCTION FENCE SHALL BE REPAIRED OR REPLACED WHEN THERE ARE SIGNS OF DAMAGE SUCH AS RIPS OR SAGS. CONSTRUCTION FENCE IS TO REMAIN IN PLACE UNTIL THE UPSTREAM DISTURBED AREA IS STABILIZED AND APPROVED BY THE LOCAL JURISDICTION.

5. WHEN CONSTRUCTION FENCES ARE REMOVED, ALL DISTURBED AREAS ASSOCIATED WITH THE INSTALLATION, MAINTENANCE, AND/OR REMOVAL OF THE FENCE SHALL BE COVERED WITH TOPSOIL, SEEDED AND MULCHED, OR OTHERWISE STABILIZED AS APPROVED BY LOCAL JURISDICTION.

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

(DETAIL ADAPTED FROM TOWN OF PARKER, COLORADO, NOT AVAILABLE IN AUTOCAD)

Vehicle tracking controls provide stabilized construction site access where vehicles exit the site onto paved public roads. An effective vehicle tracking control helps remove sediment (mud or dirt) from vehicles, reducing tracking onto the paved surface.

Appropriate Uses

Implement a stabilized construction entrance or vehicle tracking control where frequent heavy vehicle traffic exits the construction site onto a paved roadway. An effective vehicle tracking control is particularly important during the following conditions:

Photograph VTC-1. A vehicle tracking control pad constructed with properly sized rock reduces off-site sediment tracking.

- Wet weather periods when mud is easily tracked off site.
- During dry weather periods where dust is a concern.
- When poorly drained, clayey soils are present on site.

Although wheel washes are not required in designs of vehicle tracking controls, they may be needed at particularly muddy sites.

Design and Installation

Construct the vehicle tracking control on a level surface. Where feasible, grade the tracking control towards the construction site to reduce off-site runoff. Place signage, as needed, to direct construction vehicles to the designated exit through the vehicle tracking control. There are several different types of stabilized construction entrances including:

VTC-1. Aggregate Vehicle Tracking Control. This is a coarse-aggregate surfaced pad underlain by a geotextile. This is the most common vehicle tracking control, and when properly maintained can be effective at removing sediment from vehicle tires.

VTC-2. Vehicle Tracking Control with Construction Mat or Turf Reinforcement Mat. This type of control may be appropriate for site access at very small construction sites with low traffic volume over vegetated areas. Although this application does not typically remove sediment from vehicles, it helps protect existing vegetation and provides a stabilized entrance.

Vehicle Tracking Control		
Functions		
Erosion Control	Moderate	
Sediment Control	Yes	
Site/Material Management	Yes	

VTC-3. Stabilized Construction Entrance/Exit with Wheel Wash. This is an aggregate pad, similar to VTC-1, but includes equipment for tire washing. The wheel wash equipment may be as simple as hand-held power washing equipment to more advance proprietary systems. When a wheel wash is provided, it is important to direct wash water to a sediment trap prior to discharge from the site.

Vehicle tracking controls are sometimes installed in combination with a sediment trap to treat runoff.

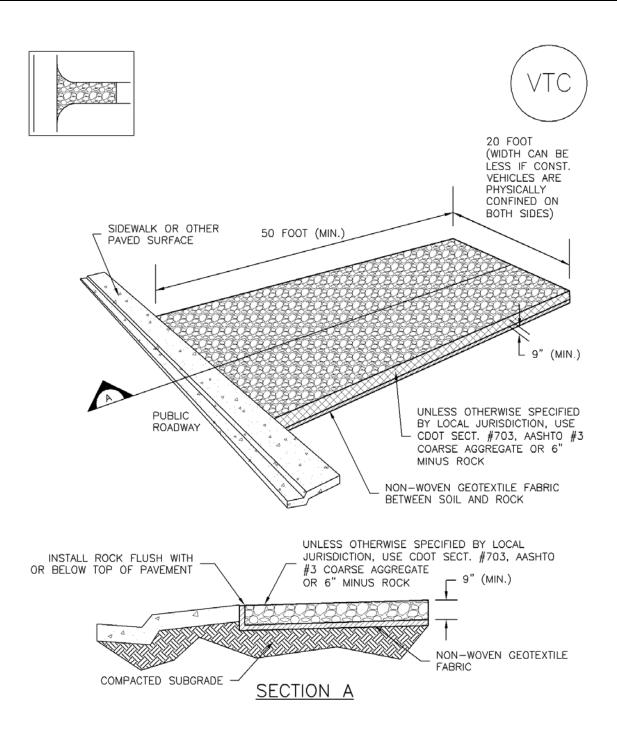
Maintenance and Removal

Inspect the area for degradation and replace aggregate or material used for a stabilized entrance/exit as needed. If the area becomes clogged and ponds water, remove and dispose of excess sediment or replace material with a fresh layer of aggregate as necessary.

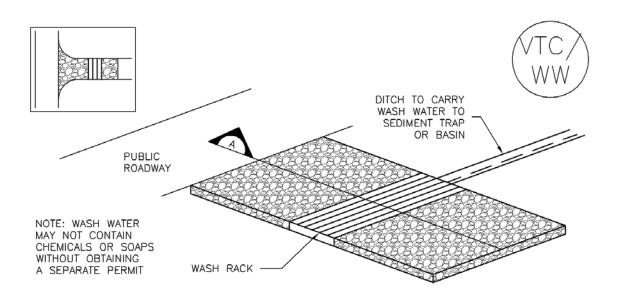
With aggregate vehicle tracking controls, ensure rock and debris from this area do not enter the public right-of-way.

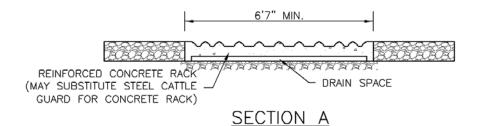
Remove sediment that is tracked onto the public right of way daily or more frequently as needed. Excess sediment in the roadway indicates that the stabilized construction entrance needs maintenance.

Ensure that drainage ditches at the entrance/exit area remain clear.

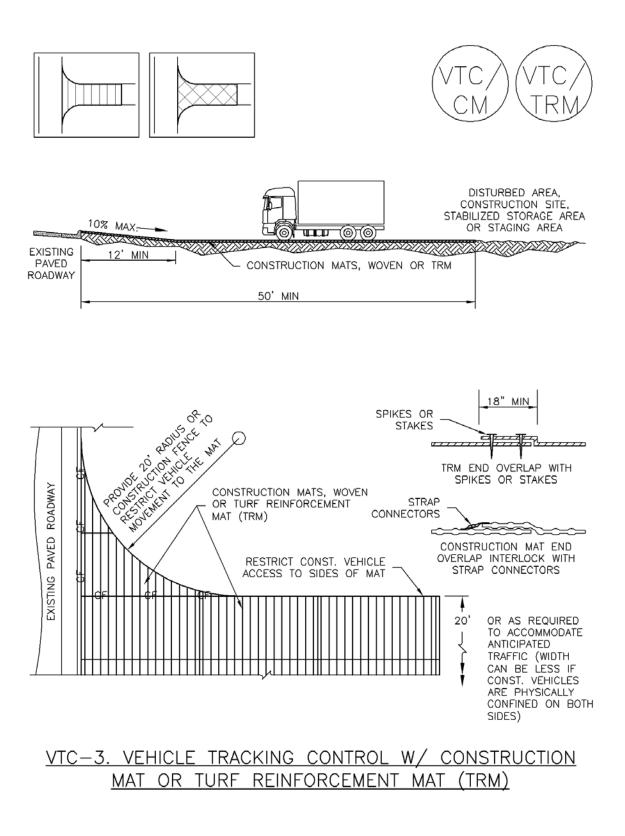


Photograph VTC-2. A vehicle tracking control pad with wheel wash facility. Photo courtesy of Tom Gore.


A stabilized entrance should be removed only when there is no longer the potential for vehicle tracking to occur. This is typically after the site has been stabilized.


When wheel wash equipment is used, be sure that the wash water is discharged to a sediment trap prior to discharge. Also inspect channels conveying the water from the wash area to the sediment trap and stabilize areas that may be eroding.

When a construction entrance/exit is removed, excess sediment from the aggregate should be removed and disposed of appropriately. The entrance should be promptly stabilized with a permanent surface following removal, typically by paving.



VTC-1. AGGREGATE VEHICLE TRACKING CONTROL

VTC-2. AGGREGATE VEHICLE TRACKING CONTROL WITH WASH RACK

STABILIZED CONSTRUCTION ENTRANCE/EXIT INSTALLATION NOTES

1. SEE PLAN VIEW FOR

-LOCATION OF CONSTRUCTION ENTRANCE(S)/EXIT(S).

-TYPE OF CONSTRUCTION ENTRANCE(S)/EXITS(S) (WITH/WITHOUT WHEEL WASH, CONSTRUCTION MAT OR TRM).

2. CONSTRUCTION MAT OR TRM STABILIZED CONSTRUCTION ENTRANCES ARE ONLY TO BE USED ON SHORT DURATION PROJECTS (TYPICALLY RANGING FROM A WEEK TO A MONTH) WHERE THERE WILL BE LIMITED VEHICULAR ACCESS.

3. A STABILIZED CONSTRUCTION ENTRANCE/EXIT SHALL BE LOCATED AT ALL ACCESS POINTS WHERE VEHICLES ACCESS THE CONSTRUCTION SITE FROM PAVED RIGHT-OF-WAYS.

4. STABILIZED CONSTRUCTION ENTRANCE/EXIT SHALL BE INSTALLED PRIOR TO ANY LAND DISTURBING ACTIVITIES.

5. A NON-WOVEN GEOTEXTILE FABRIC SHALL BE PLACED UNDER THE STABILIZED CONSTRUCTION ENTRANCE/EXIT PRIOR TO THE PLACEMENT OF ROCK.

6. UNLESS OTHERWISE SPECIFIED BY LOCAL JURISDICTION, ROCK SHALL CONSIST OF DOT SECT. #703, AASHTO #3 COARSE AGGREGATE OR 6" (MINUS) ROCK.

STABILIZED CONSTRUCTION ENTRANCE/EXIT MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. ROCK SHALL BE REAPPLIED OR REGRADED AS NECESSARY TO THE STABILIZED ENTRANCE/EXIT TO MAINTAIN A CONSISTENT DEPTH.

5. SEDIMENT TRACKED ONTO PAVED ROADS IS TO BE REMOVED THROUGHOUT THE DAY AND AT THE END OF THE DAY BY SHOVELING OR SWEEPING. SEDIMENT MAY NOT BE WASHED DOWN STORM SEWER DRAINS.

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

(DETAILS ADAPTED FROM CITY OF BROOMFIELD, COLORADO, NOT AVAILABLE IN AUTOCAD)

A stabilized staging area is a clearly designated area where construction equipment and vehicles, stockpiles, waste bins, and other construction-related materials are stored. The contractor office trailer may also be located in this area. Depending on the size of the construction site, more than one staging area may be necessary.

Appropriate Uses

Most construction sites will require a staging area, which should be clearly designated in SWMP drawings. The layout of the staging area may vary depending on

Photograph SSA-1. Example of a staging area with a gravel surface to prevent mud tracking and reduce runoff. Photo courtesy of Douglas County.

the type of construction activity. Staging areas located in roadways due to space constraints require special measures to avoid materials being washed into storm inlets.

Design and Installation

Stabilized staging areas should be completed prior to other construction activities beginning on the site. Major components of a stabilized staging area include:

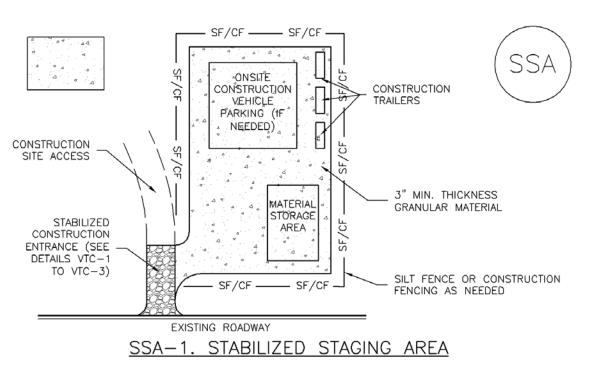
- Appropriate space to contain storage and provide for loading/unloading operations, as well as parking if necessary.
- A stabilized surface, either paved or covered, with 3-inch diameter aggregate or larger.
- Perimeter controls such as silt fence, sediment control logs, or other measures.
- Construction fencing to prevent unauthorized access to construction materials.
- Provisions for Good Housekeeping practices related to materials storage and disposal, as described in the Good Housekeeping BMP Fact Sheet.
- A stabilized construction entrance/exit, as described in the Vehicle Tracking Control BMP Fact Sheet, to accommodate traffic associated with material delivery and waste disposal vehicles.

Over-sizing the stabilized staging area may result in disturbance of existing vegetation in excess of that required for the project. This increases costs, as well as

required for the project. This increases costs, as wen as requirements for long-term stabilization following the construction period. When designing the stabilized staging area, minimize the area of disturbance to the extent practical.

Stabilized Staging Area		
Functions		
Erosion Control	Yes	
Sediment Control	Moderate	
Site/Material	Yes	

Minimizing Long-Term Stabilization Requirements


- Utilize off-site parking and restrict vehicle access to the site.
- Use construction mats in lieu of rock when staging is provided in an area that will not be disturbed otherwise.
- Consider use of a bermed contained area for materials and equipment that do not require a stabilized surface.
- Consider phasing of staging areas to avoid disturbance in an area that will not be otherwise disturbed.

See Detail SSA-1 for a typical stabilized staging area and SSA-2 for a stabilized staging area when materials staging in roadways is required.

Maintenance and Removal

Maintenance of stabilized staging areas includes maintaining a stable surface cover of gravel, repairing perimeter controls, and following good housekeeping practices.

When construction is complete, debris, unused stockpiles and materials should be recycled or properly disposed. In some cases, this will require disposal of contaminated soil from equipment leaks in an appropriate landfill. Staging areas should then be permanently stabilized with vegetation or other surface cover planned for the development.

STABILIZED STAGING AREA INSTALLATION NOTES

- 1. SEE PLAN VIEW FOR
 - -LOCATION OF STAGING AREA(S).

-CONTRACTOR MAY ADJUST LOCATION AND SIZE OF STAGING AREA WITH APPROVAL FROM THE LOCAL JURISDICTION.

2. STABILIZED STAGING AREA SHOULD BE APPROPRIATE FOR THE NEEDS OF THE SITE. OVERSIZING RESULTS IN A LARGER AREA TO STABILIZE FOLLOWING CONSTRUCTION.

3. STAGING AREA SHALL BE STABILIZED PRIOR TO OTHER OPERATIONS ON THE SITE.

4. THE STABILIZED STAGING AREA SHALL CONSIST OF A MINIMUM 3" THICK GRANULAR MATERIAL.

5. UNLESS OTHERWISE SPECIFIED BY LOCAL JURISDICTION, ROCK SHALL CONSIST OF DOT SECT. #703, AASHTO #3 COARSE AGGREGATE OR 6" (MINUS) ROCK.

6. ADDITIONAL PERIMETER BMPs MAY BE REQUIRED INCLUDING BUT NOT LIMITED TO SILT FENCE AND CONSTRUCTION FENCING.

STABILIZED STAGING AREA MAINTENANCE NOTES

1. INSPECT BMPs EACH WORKDAY, AND MAINTAIN THEM IN EFFECTIVE OPERATING CONDITION. MAINTENANCE OF BMPs SHOULD BE PROACTIVE, NOT REACTIVE. INSPECT BMPs AS SOON AS POSSIBLE (AND ALWAYS WITHIN 24 HOURS) FOLLOWING A STORM THAT CAUSES SURFACE EROSION, AND PERFORM NECESSARY MAINTENANCE.

2. FREQUENT OBSERVATIONS AND MAINTENANCE ARE NECESSARY TO MAINTAIN BMPs IN EFFECTIVE OPERATING CONDITION. INSPECTIONS AND CORRECTIVE MEASURES SHOULD BE DOCUMENTED THOROUGHLY.

3. WHERE BMPs HAVE FAILED, REPAIR OR REPLACEMENT SHOULD BE INITIATED UPON DISCOVERY OF THE FAILURE.

4. ROCK SHALL BE REAPPLIED OR REGRADED AS NECESSARY IF RUTTING OCCURS OR UNDERLYING SUBGRADE BECOMES EXPOSED.

STABILIZED STAGING AREA MAINTENANCE NOTES

5. STABILIZED STAGING AREA SHALL BE ENLARGED IF NECESSARY TO CONTAIN PARKING, STORAGE, AND UNLOADING/LOADING OPERATIONS.

6. THE STABILIZED STAGING AREA SHALL BE REMOVED AT THE END OF CONSTRUCTION. THE GRANULAR MATERIAL SHALL BE REMOVED OR, IF APPROVED BY THE LOCAL JURISDICTION, USED ON SITE, AND THE AREA COVERED WITH TOPSOIL, SEEDED AND MULCHED OR OTHERWISE STABILIZED IN A MANNER APPROVED BY LOCAL JURISDICTION.

NOTE: MANY MUNICIPALITIES PROHIBIT THE USE OF RECYCLED CONCRETE AS GRANULAR MATERIAL FOR STABILIZED STAGING AREAS DUE TO DIFFICULTIES WITH RE-ESTABLISHMENT OF VEGETATION IN AREAS WHERE RECYCLED CONCRETE WAS PLACED.

NOTE: MANY JURISDICTIONS HAVE BMP DETAILS THAT VARY FROM UDFCD STANDARD DETAILS. CONSULT WITH LOCAL JURISDICTIONS AS TO WHICH DETAIL SHOULD BE USED WHEN DIFFERENCES ARE NOTED.

(DETAILS ADAPTED FROM DOUGLAS COUNTY, COLORADO, NOT AVAILABLE IN AUTOCAD)

Street sweeping and vacuuming remove sediment that has been tracked onto roadways to reduce sediment transport into storm drain systems or a surface waterway.

Appropriate Uses

Use this practice at construction sites where vehicles may track sediment offsite onto paved roadways.

Design and Installation

Street sweeping or vacuuming should be conducted when there is noticeable

Photograph SS-1. A street sweeper removes sediment and potential pollutants along the curb line at a construction site. Photo courtesy of Tom Gore.

sediment accumulation on roadways adjacent to the construction site. Typically, this will be concentrated at the entrance/exit to the construction site. Well-maintained stabilized construction entrances, vehicle tracking controls and tire wash facilities can help reduce the necessary frequency of street sweeping and vacuuming.

On smaller construction sites, street sweeping can be conducted manually using a shovel and broom. Never wash accumulated sediment on roadways into storm drains.

Maintenance and Removal

- Inspect paved roads around the perimeter of the construction site on a daily basis and more frequently, as needed. Remove accumulated sediment, as needed.
- Following street sweeping, check inlet protection that may have been displaced during street sweeping.
- Inspect area to be swept for materials that may be hazardous prior to beginning sweeping operations.

Street Sweeping/ Vacuuming		
Functions		
Erosion Control	No	
Sediment Control	Yes	
Site/Material Management	Yes	